new in CylinderCoords: closed alpha field domain
todo: - include r=0 - make sure a varying mesh in alpha-direction is OKpull/1/head
parent
3b29514d16
commit
4db42917bb
|
@ -26,18 +26,191 @@ Engine_Cylinder* Engine_Cylinder::New(const Operator_Cylinder* op)
|
|||
|
||||
Engine_Cylinder::Engine_Cylinder(const Operator_Cylinder* op) : Engine(op)
|
||||
{
|
||||
cyl_Op = op;
|
||||
if (cyl_Op->GetClosedAlpha())
|
||||
{
|
||||
++numLines[1]; //necessary for dobled voltage and current line in alpha-dir, operator will return one smaller for correct post-processing
|
||||
}
|
||||
}
|
||||
|
||||
Engine_Cylinder::~Engine_Cylinder()
|
||||
{
|
||||
Reset();
|
||||
}
|
||||
|
||||
void Engine_Cylinder::Init()
|
||||
{
|
||||
Engine::Init();
|
||||
|
||||
// if (cyl_Op->GetClosedAlpha())
|
||||
// {
|
||||
// unsigned int lastLine = Op->numLines[1]-1; //number of last alpha-line
|
||||
// unsigned int pos[3];
|
||||
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
|
||||
// {
|
||||
// for (int n=0;n<3;++n)
|
||||
// {
|
||||
// delete[] volt[n][pos[0]][lastLine];
|
||||
// volt[n][pos[0]][lastLine] = volt[n][pos[0]][0];
|
||||
// delete[] curr[n][pos[0]][lastLine];
|
||||
// curr[n][pos[0]][lastLine] = curr[n][pos[0]][0];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
void Engine_Cylinder::Reset()
|
||||
{
|
||||
Engine::Reset();
|
||||
// if (cyl_Op->GetClosedAlpha())
|
||||
// {
|
||||
// unsigned int lastLine = Op->numLines[1]-1; //number of last alpha-line
|
||||
// unsigned int pos[3];
|
||||
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
|
||||
// {
|
||||
// for (int n=0;n<3;++n)
|
||||
// {
|
||||
// volt[n][pos[0]][lastLine] = NULL;
|
||||
// curr[n][pos[0]][lastLine] = NULL;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
inline void Engine_Cylinder::CloseAlphaVoltages()
|
||||
{
|
||||
unsigned int pos[3];
|
||||
// copy voltages from last alpha-plane to first
|
||||
unsigned int last_A_Line = numLines[1]-1;
|
||||
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
|
||||
{
|
||||
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
|
||||
{
|
||||
volt[0][pos[0]][0][pos[2]] = volt[0][pos[0]][last_A_Line][pos[2]];
|
||||
volt[1][pos[0]][0][pos[2]] = volt[1][pos[0]][last_A_Line][pos[2]];
|
||||
volt[2][pos[0]][0][pos[2]] = volt[2][pos[0]][last_A_Line][pos[2]];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
inline void Engine_Cylinder::CloseAlphaCurrents()
|
||||
{
|
||||
unsigned int pos[3];
|
||||
// copy currents from first alpha-plane to last
|
||||
for (pos[0]=0;pos[0]<numLines[0]-1;++pos[0])
|
||||
{
|
||||
unsigned int last_A_Line = numLines[1]-1;
|
||||
for (pos[2]=0;pos[2]<numLines[2]-1;++pos[2])
|
||||
{
|
||||
curr[0][pos[0]][last_A_Line][pos[2]] = curr[0][pos[0]][0][pos[2]];
|
||||
curr[1][pos[0]][last_A_Line][pos[2]] = curr[1][pos[0]][0][pos[2]];
|
||||
curr[2][pos[0]][last_A_Line][pos[2]] = curr[2][pos[0]][0][pos[2]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool Engine_Cylinder::IterateTS(unsigned int iterTS)
|
||||
{
|
||||
if (cyl_Op->GetClosedAlpha()==false)
|
||||
return Engine::IterateTS(iterTS);
|
||||
|
||||
for (unsigned int iter=0;iter<iterTS;++iter)
|
||||
{
|
||||
UpdateVoltages();
|
||||
ApplyVoltageExcite();
|
||||
|
||||
CloseAlphaVoltages();
|
||||
|
||||
UpdateCurrents();
|
||||
ApplyCurrentExcite();
|
||||
|
||||
CloseAlphaCurrents();
|
||||
|
||||
++numTS;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//inline void Engine_Cylinder::UpdateVoltages()
|
||||
//{
|
||||
// unsigned int pos[3];
|
||||
// bool shift[3];
|
||||
//
|
||||
// if (cyl_Op->GetClosedAlpha()==false)
|
||||
// return Engine::UpdateVoltages();
|
||||
//
|
||||
// //voltage updates
|
||||
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
|
||||
// {
|
||||
// shift[0]=pos[0];
|
||||
// for (pos[1]=1;pos[1]<Op->numLines[1];++pos[1])
|
||||
// {
|
||||
// shift[1]=pos[1];
|
||||
// for (pos[2]=0;pos[2]<Op->numLines[2];++pos[2])
|
||||
// {
|
||||
// shift[2]=pos[2];
|
||||
// //do the updates here
|
||||
// //for x
|
||||
// volt[0][pos[0]][pos[1]][pos[2]] *= Op->vv[0][pos[0]][pos[1]][pos[2]];
|
||||
// volt[0][pos[0]][pos[1]][pos[2]] += Op->vi[0][pos[0]][pos[1]][pos[2]] * ( curr[2][pos[0]][pos[1]][pos[2]] - curr[2][pos[0]][pos[1]-shift[1]][pos[2]] - curr[1][pos[0]][pos[1]][pos[2]] + curr[1][pos[0]][pos[1]][pos[2]-shift[2]]);
|
||||
//
|
||||
// //for y
|
||||
// volt[1][pos[0]][pos[1]][pos[2]] *= Op->vv[1][pos[0]][pos[1]][pos[2]];
|
||||
// volt[1][pos[0]][pos[1]][pos[2]] += Op->vi[1][pos[0]][pos[1]][pos[2]] * ( curr[0][pos[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]-shift[2]] - curr[2][pos[0]][pos[1]][pos[2]] + curr[2][pos[0]-shift[0]][pos[1]][pos[2]]);
|
||||
//
|
||||
// //for z
|
||||
// volt[2][pos[0]][pos[1]][pos[2]] *= Op->vv[2][pos[0]][pos[1]][pos[2]];
|
||||
// volt[2][pos[0]][pos[1]][pos[2]] += Op->vi[2][pos[0]][pos[1]][pos[2]] * ( curr[1][pos[0]][pos[1]][pos[2]] - curr[1][pos[0]-shift[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]] + curr[0][pos[0]][pos[1]-shift[1]][pos[2]]);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // copy voltages from last alpha-plane to first
|
||||
// unsigned int last_A_Line = Op->numLines[1]-1;
|
||||
// for (pos[2]=0;pos[2]<Op->numLines[2];++pos[2])
|
||||
// {
|
||||
// volt[0][pos[0]][0][pos[2]] = volt[0][pos[0]][last_A_Line][pos[2]];
|
||||
// volt[1][pos[0]][0][pos[2]] = volt[1][pos[0]][last_A_Line][pos[2]];
|
||||
// volt[2][pos[0]][0][pos[2]] = volt[2][pos[0]][last_A_Line][pos[2]];
|
||||
// }
|
||||
//
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//inline void Engine_Cylinder::UpdateCurrents()
|
||||
//{
|
||||
// if (cyl_Op->GetClosedAlpha()==false)
|
||||
// return Engine::UpdateCurrents();
|
||||
//
|
||||
// unsigned int pos[3];
|
||||
// for (pos[0]=0;pos[0]<Op->numLines[0]-1;++pos[0])
|
||||
// {
|
||||
// for (pos[1]=0;pos[1]<Op->numLines[1]-1;++pos[1])
|
||||
// {
|
||||
// for (pos[2]=0;pos[2]<Op->numLines[2]-1;++pos[2])
|
||||
// {
|
||||
// //do the updates here
|
||||
// //for x
|
||||
// curr[0][pos[0]][pos[1]][pos[2]] *= Op->ii[0][pos[0]][pos[1]][pos[2]];
|
||||
// curr[0][pos[0]][pos[1]][pos[2]] += Op->iv[0][pos[0]][pos[1]][pos[2]] * ( volt[2][pos[0]][pos[1]][pos[2]] - volt[2][pos[0]][pos[1]+1][pos[2]] - volt[1][pos[0]][pos[1]][pos[2]] + volt[1][pos[0]][pos[1]][pos[2]+1]);
|
||||
//
|
||||
// //for y
|
||||
// curr[1][pos[0]][pos[1]][pos[2]] *= Op->ii[1][pos[0]][pos[1]][pos[2]];
|
||||
// curr[1][pos[0]][pos[1]][pos[2]] += Op->iv[1][pos[0]][pos[1]][pos[2]] * ( volt[0][pos[0]][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]+1] - volt[2][pos[0]][pos[1]][pos[2]] + volt[2][pos[0]+1][pos[1]][pos[2]]);
|
||||
//
|
||||
// //for z
|
||||
// curr[2][pos[0]][pos[1]][pos[2]] *= Op->ii[2][pos[0]][pos[1]][pos[2]];
|
||||
// curr[2][pos[0]][pos[1]][pos[2]] += Op->iv[2][pos[0]][pos[1]][pos[2]] * ( volt[1][pos[0]][pos[1]][pos[2]] - volt[1][pos[0]+1][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]] + volt[0][pos[0]][pos[1]+1][pos[2]]);
|
||||
// }
|
||||
// }
|
||||
// // copy currents from first alpha-plane to last
|
||||
// unsigned int last_A_Line = Op->numLines[1]-1;
|
||||
// for (pos[2]=0;pos[2]<Op->numLines[2]-1;++pos[2])
|
||||
// {
|
||||
// curr[0][pos[0]][last_A_Line][pos[2]] = curr[0][pos[0]][0][pos[2]];
|
||||
// curr[1][pos[0]][last_A_Line][pos[2]] = curr[1][pos[0]][0][pos[2]];
|
||||
// curr[2][pos[0]][last_A_Line][pos[2]] = curr[2][pos[0]][0][pos[2]];
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
|
|
@ -25,13 +25,21 @@ class Engine_Cylinder : public Engine
|
|||
{
|
||||
public:
|
||||
static Engine_Cylinder* New(const Operator_Cylinder* op);
|
||||
virtual ~Engine_Cylinder();
|
||||
|
||||
virtual void Init();
|
||||
virtual void Reset();
|
||||
|
||||
//!Iterate a number of timesteps
|
||||
virtual bool IterateTS(unsigned int iterTS);
|
||||
|
||||
protected:
|
||||
Engine_Cylinder(const Operator_Cylinder* op);
|
||||
~Engine_Cylinder();
|
||||
|
||||
virtual inline void CloseAlphaVoltages();
|
||||
virtual inline void CloseAlphaCurrents();
|
||||
|
||||
const Operator_Cylinder* cyl_Op;
|
||||
};
|
||||
|
||||
#endif // ENGINE_CYLINDER_H
|
||||
|
|
|
@ -45,6 +45,16 @@ void Operator_Cylinder::Reset()
|
|||
Operator::Reset();
|
||||
}
|
||||
|
||||
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
|
||||
{
|
||||
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
|
||||
if (CC_closedAlpha && ny==1)
|
||||
return numLines[1]-1;
|
||||
|
||||
return numLines[ny];
|
||||
}
|
||||
|
||||
|
||||
bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
|
||||
{
|
||||
if (Operator::SetGeometryCSX(geo)==false) return false;
|
||||
|
@ -53,10 +63,20 @@ bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
|
|||
// cerr << minmaxA -2*PI << " < " << (2*PI)/10/numLines[1] << endl;
|
||||
if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width
|
||||
{
|
||||
CC_closedAlpha = true;
|
||||
--numLines[1];
|
||||
cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl;
|
||||
cerr << "Operator_Cylinder::SetGeometryCSX: closed cylinder not yet implemented... exit... " << endl; exit(1);
|
||||
CC_closedAlpha = true;
|
||||
discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI;
|
||||
cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl;
|
||||
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1])
|
||||
{
|
||||
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
|
||||
exit(1);
|
||||
}
|
||||
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0)
|
||||
{
|
||||
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
|
||||
discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0);
|
||||
}
|
||||
}
|
||||
else if (minmaxA>2*PI)
|
||||
{cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;}
|
||||
|
|
|
@ -33,6 +33,11 @@ public:
|
|||
|
||||
virtual void Reset();
|
||||
|
||||
virtual unsigned int GetNumberOfLines(int ny) const;
|
||||
|
||||
bool GetClosedAlpha() const {return CC_closedAlpha;}
|
||||
bool GetR0Included() const {return CC_R0_included;}
|
||||
|
||||
protected:
|
||||
Operator_Cylinder();
|
||||
virtual void Init();
|
||||
|
|
|
@ -0,0 +1,129 @@
|
|||
close all;
|
||||
clear all;
|
||||
clc
|
||||
|
||||
EPS0 = 8.85418781762e-12;
|
||||
MUE0 = 1.256637062e-6;
|
||||
C0 = 1/sqrt(EPS0*MUE0);
|
||||
Z0 = sqrt(MUE0/EPS0);
|
||||
|
||||
f0 = 0.5e9;
|
||||
epsR = 1;
|
||||
|
||||
abs_length = 500;
|
||||
length = 3000;
|
||||
port_dist = 1500;
|
||||
rad_i = 100;
|
||||
rad_a = 230;
|
||||
max_mesh = 10;
|
||||
max_alpha = max_mesh;
|
||||
N_alpha = ceil(rad_a * 2*pi / max_alpha);
|
||||
mesh_res = [max_mesh 2*pi/N_alpha max_mesh];
|
||||
|
||||
openEMS_Path = [pwd() '/../../'];
|
||||
openEMS_opts = '';
|
||||
openEMS_opts = [openEMS_opts ' --disable-dumps'];
|
||||
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
||||
|
||||
Sim_Path = 'tmp';
|
||||
Sim_CSX = 'coax.xml';
|
||||
|
||||
mkdir(Sim_Path);
|
||||
|
||||
%setup FDTD parameter
|
||||
FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10);
|
||||
FDTD = SetGaussExcite(FDTD,f0,f0);
|
||||
BC = [0 0 1 1 0 0];
|
||||
FDTD = SetBoundaryCond(FDTD,BC);
|
||||
|
||||
%setup CSXCAD geometry
|
||||
CSX = InitCSX();
|
||||
mesh.x = rad_i : mesh_res(1) : rad_a;
|
||||
mesh.y = linspace(0,2*pi,N_alpha);
|
||||
% mesh.y = mesh.y + mesh_res(2)/2;
|
||||
mesh.z = 0 : mesh_res(3) : length;
|
||||
CSX = DefineRectGrid(CSX, 1e-3,mesh);
|
||||
|
||||
%%%fake pml
|
||||
finalKappa = 0.3/abs_length^4;
|
||||
finalSigma = finalKappa*MUE0/EPS0/epsR;
|
||||
CSX = AddMaterial(CSX,'pml');
|
||||
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa,'Epsilon',epsR);
|
||||
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
|
||||
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
||||
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
||||
|
||||
start = [rad_i mesh.y(1) length-abs_length];
|
||||
stop = [rad_a mesh.y(end) length];
|
||||
CSX = AddBox(CSX,'pml',0 ,start,stop);
|
||||
|
||||
|
||||
CSX = AddMaterial(CSX,'fill');
|
||||
CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR);
|
||||
start = [mesh.x(1) mesh.y(1) 0];
|
||||
stop = [mesh.x(end) mesh.y(end) length];
|
||||
CSX = AddBox(CSX,'fill',0 ,start,stop);
|
||||
|
||||
start = [rad_i mesh.y(1) 0];
|
||||
stop = [rad_a mesh.y(end) 0];
|
||||
|
||||
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
|
||||
weight{1} = '1/rho';
|
||||
weight{2} = 0;
|
||||
weight{3} = 0;
|
||||
CSX = SetExcitationWeight(CSX, 'excite', weight );
|
||||
CSX = AddBox(CSX,'excite',0 ,start,stop);
|
||||
|
||||
%dump
|
||||
CSX = AddDump(CSX,'Et_','DumpMode',0);
|
||||
start = [mesh.x(1) , 0 , mesh.z(1)];
|
||||
stop = [mesh.x(end) , 0 , mesh.z(end)];
|
||||
CSX = AddBox(CSX,'Et_',0 , start,stop);
|
||||
|
||||
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0);
|
||||
CSX = AddBox(CSX,'Ht_',0,start,stop);
|
||||
|
||||
% voltage calc (take a voltage average to be at the same spot as the
|
||||
% current calculation)
|
||||
CSX = AddProbe(CSX,'ut1_1',0);
|
||||
start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ];
|
||||
CSX = AddBox(CSX,'ut1_1', 0 ,start,stop);
|
||||
CSX = AddProbe(CSX,'ut1_2',0);
|
||||
start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ];
|
||||
CSX = AddBox(CSX,'ut1_2', 0 ,start,stop);
|
||||
|
||||
% current calc
|
||||
CSX = AddProbe(CSX,'it1',1);
|
||||
mid = 0.5*(rad_i+rad_a);
|
||||
start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ];
|
||||
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
||||
|
||||
%Write openEMS compatoble xml-file
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||||
|
||||
%cd to working dir and run openEMS
|
||||
savePath = pwd();
|
||||
cd(Sim_Path); %cd to working dir
|
||||
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
|
||||
disp(command);
|
||||
system(command)
|
||||
cd(savePath);
|
||||
|
||||
UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
|
||||
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
|
||||
i_f = UI.FD{3}.val;
|
||||
|
||||
delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s)
|
||||
i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field
|
||||
|
||||
ZL = Z0/2/pi/sqrt(epsR)*log(rad_a/rad_i); %analytic line-impedance of a coax
|
||||
plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g');
|
||||
hold on;
|
||||
grid on;
|
||||
Z = u_f./i_f2;
|
||||
plot(UI.FD{1}.f,real(Z),'Linewidth',2);
|
||||
plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2);
|
||||
xlim([0 2*f0]);
|
||||
legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');
|
||||
|
||||
|
Loading…
Reference in New Issue