new in CylinderCoords: closed alpha field domain

todo:
 - include r=0
 - make sure a varying mesh in alpha-direction is OK
pull/1/head
Thorsten Liebig 2010-04-11 23:52:38 +02:00
parent 3b29514d16
commit 4db42917bb
5 changed files with 340 additions and 5 deletions

View File

@ -26,18 +26,191 @@ Engine_Cylinder* Engine_Cylinder::New(const Operator_Cylinder* op)
Engine_Cylinder::Engine_Cylinder(const Operator_Cylinder* op) : Engine(op)
{
cyl_Op = op;
if (cyl_Op->GetClosedAlpha())
{
++numLines[1]; //necessary for dobled voltage and current line in alpha-dir, operator will return one smaller for correct post-processing
}
}
Engine_Cylinder::~Engine_Cylinder()
{
Reset();
}
void Engine_Cylinder::Init()
{
Engine::Init();
// if (cyl_Op->GetClosedAlpha())
// {
// unsigned int lastLine = Op->numLines[1]-1; //number of last alpha-line
// unsigned int pos[3];
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
// {
// for (int n=0;n<3;++n)
// {
// delete[] volt[n][pos[0]][lastLine];
// volt[n][pos[0]][lastLine] = volt[n][pos[0]][0];
// delete[] curr[n][pos[0]][lastLine];
// curr[n][pos[0]][lastLine] = curr[n][pos[0]][0];
// }
// }
// }
}
void Engine_Cylinder::Reset()
{
Engine::Reset();
// if (cyl_Op->GetClosedAlpha())
// {
// unsigned int lastLine = Op->numLines[1]-1; //number of last alpha-line
// unsigned int pos[3];
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
// {
// for (int n=0;n<3;++n)
// {
// volt[n][pos[0]][lastLine] = NULL;
// curr[n][pos[0]][lastLine] = NULL;
// }
// }
// }
}
inline void Engine_Cylinder::CloseAlphaVoltages()
{
unsigned int pos[3];
// copy voltages from last alpha-plane to first
unsigned int last_A_Line = numLines[1]-1;
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
volt[0][pos[0]][0][pos[2]] = volt[0][pos[0]][last_A_Line][pos[2]];
volt[1][pos[0]][0][pos[2]] = volt[1][pos[0]][last_A_Line][pos[2]];
volt[2][pos[0]][0][pos[2]] = volt[2][pos[0]][last_A_Line][pos[2]];
}
}
}
inline void Engine_Cylinder::CloseAlphaCurrents()
{
unsigned int pos[3];
// copy currents from first alpha-plane to last
for (pos[0]=0;pos[0]<numLines[0]-1;++pos[0])
{
unsigned int last_A_Line = numLines[1]-1;
for (pos[2]=0;pos[2]<numLines[2]-1;++pos[2])
{
curr[0][pos[0]][last_A_Line][pos[2]] = curr[0][pos[0]][0][pos[2]];
curr[1][pos[0]][last_A_Line][pos[2]] = curr[1][pos[0]][0][pos[2]];
curr[2][pos[0]][last_A_Line][pos[2]] = curr[2][pos[0]][0][pos[2]];
}
}
}
bool Engine_Cylinder::IterateTS(unsigned int iterTS)
{
if (cyl_Op->GetClosedAlpha()==false)
return Engine::IterateTS(iterTS);
for (unsigned int iter=0;iter<iterTS;++iter)
{
UpdateVoltages();
ApplyVoltageExcite();
CloseAlphaVoltages();
UpdateCurrents();
ApplyCurrentExcite();
CloseAlphaCurrents();
++numTS;
}
return true;
}
//inline void Engine_Cylinder::UpdateVoltages()
//{
// unsigned int pos[3];
// bool shift[3];
//
// if (cyl_Op->GetClosedAlpha()==false)
// return Engine::UpdateVoltages();
//
// //voltage updates
// for (pos[0]=0;pos[0]<Op->numLines[0];++pos[0])
// {
// shift[0]=pos[0];
// for (pos[1]=1;pos[1]<Op->numLines[1];++pos[1])
// {
// shift[1]=pos[1];
// for (pos[2]=0;pos[2]<Op->numLines[2];++pos[2])
// {
// shift[2]=pos[2];
// //do the updates here
// //for x
// volt[0][pos[0]][pos[1]][pos[2]] *= Op->vv[0][pos[0]][pos[1]][pos[2]];
// volt[0][pos[0]][pos[1]][pos[2]] += Op->vi[0][pos[0]][pos[1]][pos[2]] * ( curr[2][pos[0]][pos[1]][pos[2]] - curr[2][pos[0]][pos[1]-shift[1]][pos[2]] - curr[1][pos[0]][pos[1]][pos[2]] + curr[1][pos[0]][pos[1]][pos[2]-shift[2]]);
//
// //for y
// volt[1][pos[0]][pos[1]][pos[2]] *= Op->vv[1][pos[0]][pos[1]][pos[2]];
// volt[1][pos[0]][pos[1]][pos[2]] += Op->vi[1][pos[0]][pos[1]][pos[2]] * ( curr[0][pos[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]-shift[2]] - curr[2][pos[0]][pos[1]][pos[2]] + curr[2][pos[0]-shift[0]][pos[1]][pos[2]]);
//
// //for z
// volt[2][pos[0]][pos[1]][pos[2]] *= Op->vv[2][pos[0]][pos[1]][pos[2]];
// volt[2][pos[0]][pos[1]][pos[2]] += Op->vi[2][pos[0]][pos[1]][pos[2]] * ( curr[1][pos[0]][pos[1]][pos[2]] - curr[1][pos[0]-shift[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]] + curr[0][pos[0]][pos[1]-shift[1]][pos[2]]);
// }
// }
//
// // copy voltages from last alpha-plane to first
// unsigned int last_A_Line = Op->numLines[1]-1;
// for (pos[2]=0;pos[2]<Op->numLines[2];++pos[2])
// {
// volt[0][pos[0]][0][pos[2]] = volt[0][pos[0]][last_A_Line][pos[2]];
// volt[1][pos[0]][0][pos[2]] = volt[1][pos[0]][last_A_Line][pos[2]];
// volt[2][pos[0]][0][pos[2]] = volt[2][pos[0]][last_A_Line][pos[2]];
// }
//
// }
//}
//
//inline void Engine_Cylinder::UpdateCurrents()
//{
// if (cyl_Op->GetClosedAlpha()==false)
// return Engine::UpdateCurrents();
//
// unsigned int pos[3];
// for (pos[0]=0;pos[0]<Op->numLines[0]-1;++pos[0])
// {
// for (pos[1]=0;pos[1]<Op->numLines[1]-1;++pos[1])
// {
// for (pos[2]=0;pos[2]<Op->numLines[2]-1;++pos[2])
// {
// //do the updates here
// //for x
// curr[0][pos[0]][pos[1]][pos[2]] *= Op->ii[0][pos[0]][pos[1]][pos[2]];
// curr[0][pos[0]][pos[1]][pos[2]] += Op->iv[0][pos[0]][pos[1]][pos[2]] * ( volt[2][pos[0]][pos[1]][pos[2]] - volt[2][pos[0]][pos[1]+1][pos[2]] - volt[1][pos[0]][pos[1]][pos[2]] + volt[1][pos[0]][pos[1]][pos[2]+1]);
//
// //for y
// curr[1][pos[0]][pos[1]][pos[2]] *= Op->ii[1][pos[0]][pos[1]][pos[2]];
// curr[1][pos[0]][pos[1]][pos[2]] += Op->iv[1][pos[0]][pos[1]][pos[2]] * ( volt[0][pos[0]][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]+1] - volt[2][pos[0]][pos[1]][pos[2]] + volt[2][pos[0]+1][pos[1]][pos[2]]);
//
// //for z
// curr[2][pos[0]][pos[1]][pos[2]] *= Op->ii[2][pos[0]][pos[1]][pos[2]];
// curr[2][pos[0]][pos[1]][pos[2]] += Op->iv[2][pos[0]][pos[1]][pos[2]] * ( volt[1][pos[0]][pos[1]][pos[2]] - volt[1][pos[0]+1][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]] + volt[0][pos[0]][pos[1]+1][pos[2]]);
// }
// }
// // copy currents from first alpha-plane to last
// unsigned int last_A_Line = Op->numLines[1]-1;
// for (pos[2]=0;pos[2]<Op->numLines[2]-1;++pos[2])
// {
// curr[0][pos[0]][last_A_Line][pos[2]] = curr[0][pos[0]][0][pos[2]];
// curr[1][pos[0]][last_A_Line][pos[2]] = curr[1][pos[0]][0][pos[2]];
// curr[2][pos[0]][last_A_Line][pos[2]] = curr[2][pos[0]][0][pos[2]];
// }
// }
//}

View File

@ -25,13 +25,21 @@ class Engine_Cylinder : public Engine
{
public:
static Engine_Cylinder* New(const Operator_Cylinder* op);
virtual ~Engine_Cylinder();
virtual void Init();
virtual void Reset();
//!Iterate a number of timesteps
virtual bool IterateTS(unsigned int iterTS);
protected:
Engine_Cylinder(const Operator_Cylinder* op);
~Engine_Cylinder();
virtual inline void CloseAlphaVoltages();
virtual inline void CloseAlphaCurrents();
const Operator_Cylinder* cyl_Op;
};
#endif // ENGINE_CYLINDER_H

View File

@ -45,6 +45,16 @@ void Operator_Cylinder::Reset()
Operator::Reset();
}
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
{
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
if (CC_closedAlpha && ny==1)
return numLines[1]-1;
return numLines[ny];
}
bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
{
if (Operator::SetGeometryCSX(geo)==false) return false;
@ -53,10 +63,20 @@ bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
// cerr << minmaxA -2*PI << " < " << (2*PI)/10/numLines[1] << endl;
if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width
{
CC_closedAlpha = true;
--numLines[1];
cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl;
cerr << "Operator_Cylinder::SetGeometryCSX: closed cylinder not yet implemented... exit... " << endl; exit(1);
CC_closedAlpha = true;
discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI;
cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl;
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1])
{
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
exit(1);
}
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0)
{
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0);
}
}
else if (minmaxA>2*PI)
{cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;}

View File

@ -33,6 +33,11 @@ public:
virtual void Reset();
virtual unsigned int GetNumberOfLines(int ny) const;
bool GetClosedAlpha() const {return CC_closedAlpha;}
bool GetR0Included() const {return CC_R0_included;}
protected:
Operator_Cylinder();
virtual void Init();

View File

@ -0,0 +1,129 @@
close all;
clear all;
clc
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
C0 = 1/sqrt(EPS0*MUE0);
Z0 = sqrt(MUE0/EPS0);
f0 = 0.5e9;
epsR = 1;
abs_length = 500;
length = 3000;
port_dist = 1500;
rad_i = 100;
rad_a = 230;
max_mesh = 10;
max_alpha = max_mesh;
N_alpha = ceil(rad_a * 2*pi / max_alpha);
mesh_res = [max_mesh 2*pi/N_alpha max_mesh];
openEMS_Path = [pwd() '/../../'];
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
Sim_Path = 'tmp';
Sim_CSX = 'coax.xml';
mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10);
FDTD = SetGaussExcite(FDTD,f0,f0);
BC = [0 0 1 1 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
CSX = InitCSX();
mesh.x = rad_i : mesh_res(1) : rad_a;
mesh.y = linspace(0,2*pi,N_alpha);
% mesh.y = mesh.y + mesh_res(2)/2;
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%%%fake pml
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0/epsR;
CSX = AddMaterial(CSX,'pml');
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa,'Epsilon',epsR);
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
start = [rad_i mesh.y(1) length-abs_length];
stop = [rad_a mesh.y(end) length];
CSX = AddBox(CSX,'pml',0 ,start,stop);
CSX = AddMaterial(CSX,'fill');
CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR);
start = [mesh.x(1) mesh.y(1) 0];
stop = [mesh.x(end) mesh.y(end) length];
CSX = AddBox(CSX,'fill',0 ,start,stop);
start = [rad_i mesh.y(1) 0];
stop = [rad_a mesh.y(end) 0];
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
weight{1} = '1/rho';
weight{2} = 0;
weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddBox(CSX,'excite',0 ,start,stop);
%dump
CSX = AddDump(CSX,'Et_','DumpMode',0);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
CSX = AddBox(CSX,'Et_',0 , start,stop);
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0);
CSX = AddBox(CSX,'Ht_',0,start,stop);
% voltage calc (take a voltage average to be at the same spot as the
% current calculation)
CSX = AddProbe(CSX,'ut1_1',0);
start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ];
CSX = AddBox(CSX,'ut1_1', 0 ,start,stop);
CSX = AddProbe(CSX,'ut1_2',0);
start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ];
CSX = AddBox(CSX,'ut1_2', 0 ,start,stop);
% current calc
CSX = AddProbe(CSX,'it1',1);
mid = 0.5*(rad_i+rad_a);
start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ];
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatoble xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
disp(command);
system(command)
cd(savePath);
UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
i_f = UI.FD{3}.val;
delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s)
i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field
ZL = Z0/2/pi/sqrt(epsR)*log(rad_a/rad_i); %analytic line-impedance of a coax
plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g');
hold on;
grid on;
Z = u_f./i_f2;
plot(UI.FD{1}.f,real(Z),'Linewidth',2);
plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2);
xlim([0 2*f0]);
legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');