Merge branch 'multithreading'

Adding multithreading support to openEMS
pull/1/head
Thorsten Liebig 2010-04-01 21:04:16 +02:00
commit 58f528bb0d
20 changed files with 993 additions and 49 deletions

View File

@ -18,10 +18,18 @@
#include "engine.h" #include "engine.h"
#include "tools/array_ops.h" #include "tools/array_ops.h"
Engine::Engine(Operator* op) //! \brief construct an Engine instance
//! it's the responsibility of the caller to free the returned pointer
Engine* Engine::createEngine(const Operator* op)
{
Engine* e = new Engine(op);
e->Init();
return e;
}
Engine::Engine(const Operator* op)
{ {
Op = op; Op = op;
Init();
} }
Engine::~Engine() Engine::~Engine()

View File

@ -23,7 +23,7 @@
class Engine class Engine
{ {
public: public:
Engine(Operator* op); static Engine* createEngine(const Operator* op);
virtual ~Engine(); virtual ~Engine();
virtual void Init(); virtual void Init();
@ -32,13 +32,14 @@ public:
//!Iterate a number of timesteps //!Iterate a number of timesteps
virtual bool IterateTS(unsigned int iterTS); virtual bool IterateTS(unsigned int iterTS);
unsigned int GetNumberOfTimesteps() {return numTS;}; virtual unsigned int GetNumberOfTimesteps() {return numTS;};
virtual FDTD_FLOAT**** GetVoltages() {return volt;}; virtual FDTD_FLOAT**** GetVoltages() {return volt;};
virtual FDTD_FLOAT**** GetCurrents() {return curr;}; virtual FDTD_FLOAT**** GetCurrents() {return curr;};
protected: protected:
Operator* Op; Engine(const Operator* op);
const Operator* Op;
FDTD_FLOAT**** volt; FDTD_FLOAT**** volt;
FDTD_FLOAT**** curr; FDTD_FLOAT**** curr;

301
FDTD/engine_multithread.cpp Normal file
View File

@ -0,0 +1,301 @@
/*
* Copyright (C) 2010 Sebastian Held (sebastian.held@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#define ENABLE_DEBUG_TIME
#ifdef ENABLE_DEBUG_TIME
#define DEBUG_TIME(x) x;
#else
#define DEBUG_TIME(x) ;
#endif
#include "engine_multithread.h"
#include "tools/array_ops.h"
#include "boost/date_time/posix_time/posix_time.hpp"
#include "boost/date_time/gregorian/gregorian.hpp"
#include <iomanip>
//! \brief construct an Engine_Multithread instance
//! it's the responsibility of the caller to free the returned pointer
Engine_Multithread* Engine_Multithread::createEngine(const Operator* op, unsigned int numThreads)
{
Engine_Multithread* e = new Engine_Multithread(op);
e->setNumThreads( numThreads );
e->Init();
return e;
}
Engine_Multithread::Engine_Multithread(const Operator* op) : Engine(op)
{
}
Engine_Multithread::~Engine_Multithread()
{
#ifdef ENABLE_DEBUG_TIME
NS_Engine_Multithread::DBG().cout() << "Engine_Multithread::~Engine_Multithread()" << endl;
std::map<boost::thread::id, std::vector<double> >::iterator it;
for (it=m_timer_list.begin(); it!=m_timer_list.end(); it++) {
NS_Engine_Multithread::DBG().cout() << "*** DEBUG Thread: " << it->first << std::endl;
std::vector<double>::iterator it2;
for (it2=it->second.begin(); it2<it->second.end();) {
NS_Engine_Multithread::DBG().cout() << "after voltage update, before barrier1: " << fixed << setprecision(6) << *(it2++) << std::endl;
NS_Engine_Multithread::DBG().cout() << "after barrier1, before barrier2: " << fixed << setprecision(6) << *(it2++) << std::endl;
NS_Engine_Multithread::DBG().cout() << "after barrier2, before current update: " << fixed << setprecision(6) << *(it2++) << std::endl;
NS_Engine_Multithread::DBG().cout() << "after current update, before barrier3: " << fixed << setprecision(6) << *(it2++) << std::endl;
NS_Engine_Multithread::DBG().cout() << "after barrier3: " << fixed << setprecision(6) << *(it2++) << std::endl;
}
}
#endif
Reset();
}
void Engine_Multithread::setNumThreads( unsigned int numThreads )
{
m_numThreads = numThreads;
}
void Engine_Multithread::Init()
{
Engine::Init(); // gets cleaned up by Engine::~Engine()
// initialize threads
m_stopThreads = false;
if (m_numThreads == 0)
m_numThreads = boost::thread::hardware_concurrency();
cout << "using " << m_numThreads << " threads" << std::endl;
m_barrier1 = new boost::barrier(m_numThreads+1); // numThread workers + 1 excitation thread
m_barrier2 = new boost::barrier(m_numThreads+1); // numThread workers + 1 excitation thread
m_barrier3 = new boost::barrier(m_numThreads); // numThread workers
m_startBarrier = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
m_stopBarrier = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
unsigned int linesPerThread = round((float)Op->numLines[0] / (float)m_numThreads);
for (unsigned int n=0; n<m_numThreads; n++) {
unsigned int start = n * linesPerThread;
unsigned int stop = (n+1) * linesPerThread - 1;
unsigned int stop_h = stop;
if (n == m_numThreads-1) {
// last thread
stop = Op->numLines[0]-1;
stop_h = stop-1;
}
//NS_Engine_Multithread::DBG().cout() << "###DEBUG## Thread " << n << ": start=" << start << " stop=" << stop << " stop_h=" << stop_h << std::endl;
boost::thread *t = new boost::thread( NS_Engine_Multithread::thread(this,start,stop,stop_h,n) );
m_thread_group.add_thread( t );
}
boost::thread *t = new boost::thread( NS_Engine_Multithread::thread_e_excitation(this) );
m_thread_group.add_thread( t );
}
void Engine_Multithread::Reset()
{
if (!m_stopThreads) {
// prevent multiple invocations
// stop the threads
//NS_Engine_Multithread::DBG().cout() << "stopping all threads" << endl;
m_iterTS = 1;
m_startBarrier->wait(); // start the threads
m_stopThreads = true;
m_stopBarrier->wait(); // wait for the threads to finish
m_thread_group.join_all(); // wait for termination
delete m_barrier1; m_barrier1 = 0;
delete m_barrier2; m_barrier2 = 0;
delete m_barrier3; m_barrier3 = 0;
delete m_startBarrier; m_startBarrier = 0;
delete m_stopBarrier; m_stopBarrier = 0;
}
Engine::Reset();
}
bool Engine_Multithread::IterateTS(unsigned int iterTS)
{
m_iterTS = iterTS;
//cout << "bool Engine_Multithread::IterateTS(): starting threads ...";
m_startBarrier->wait(); // start the threads
//cout << "... threads started";
m_stopBarrier->wait(); // wait for the threads to finish <iterTS> time steps
return true;
}
//
// *************************************************************************************************************************
//
namespace NS_Engine_Multithread {
thread::thread( Engine_Multithread* ptr, unsigned int start, unsigned int stop, unsigned int stop_h, unsigned int threadID )
{
m_enginePtr = ptr;
m_start = start;
m_stop = stop;
m_stop_h = stop_h;
m_threadID = threadID;
}
void thread::operator()()
{
//std::cout << "thread::operator() Parameters: " << m_start << " " << m_stop << std::endl;
//DBG().cout() << "Thread " << m_threadID << " (" << boost::this_thread::get_id() << ") started." << endl;
unsigned int pos[3];
bool shift[3];
while (!m_enginePtr->m_stopThreads) {
// wait for start
//DBG().cout() << "Thread " << m_threadID << " (" << boost::this_thread::get_id() << ") waiting..." << endl;
m_enginePtr->m_startBarrier->wait();
//cout << "Thread " << boost::this_thread::get_id() << " waiting... started." << endl;
DEBUG_TIME( Timer timer1 );
for (unsigned int iter=0;iter<m_enginePtr->m_iterTS;++iter)
{
//voltage updates
for (pos[0]=m_start;pos[0]<=m_stop;++pos[0])
{
shift[0]=pos[0];
for (pos[1]=0;pos[1]<m_enginePtr->Op->numLines[1];++pos[1])
{
shift[1]=pos[1];
for (pos[2]=0;pos[2]<m_enginePtr->Op->numLines[2];++pos[2])
{
shift[2]=pos[2];
//do the updates here
//for x
m_enginePtr->volt[0][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->vv[0][pos[0]][pos[1]][pos[2]];
m_enginePtr->volt[0][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->vi[0][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->curr[2][pos[0]][pos[1]][pos[2]] - m_enginePtr->curr[2][pos[0]][pos[1]-shift[1]][pos[2]] - m_enginePtr->curr[1][pos[0]][pos[1]][pos[2]] + m_enginePtr->curr[1][pos[0]][pos[1]][pos[2]-shift[2]]);
//for y
m_enginePtr->volt[1][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->vv[1][pos[0]][pos[1]][pos[2]];
m_enginePtr->volt[1][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->vi[1][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->curr[0][pos[0]][pos[1]][pos[2]] - m_enginePtr->curr[0][pos[0]][pos[1]][pos[2]-shift[2]] - m_enginePtr->curr[2][pos[0]][pos[1]][pos[2]] + m_enginePtr->curr[2][pos[0]-shift[0]][pos[1]][pos[2]]);
//for x
m_enginePtr->volt[2][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->vv[2][pos[0]][pos[1]][pos[2]];
m_enginePtr->volt[2][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->vi[2][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->curr[1][pos[0]][pos[1]][pos[2]] - m_enginePtr->curr[1][pos[0]-shift[0]][pos[1]][pos[2]] - m_enginePtr->curr[0][pos[0]][pos[1]][pos[2]] + m_enginePtr->curr[0][pos[0]][pos[1]-shift[1]][pos[2]]);
}
}
}
// record time
DEBUG_TIME( m_enginePtr->m_timer_list[boost::this_thread::get_id()].push_back( timer1.elapsed() ); )
//cout << "Thread " << boost::this_thread::get_id() << " m_barrier1 waiting..." << endl;
m_enginePtr->m_barrier1->wait();
// record time
DEBUG_TIME( m_enginePtr->m_timer_list[boost::this_thread::get_id()].push_back( timer1.elapsed() ); )
// e-field excitation (thread thread_e_excitation)
m_enginePtr->m_barrier2->wait();
// e_excitation finished
// record time
DEBUG_TIME( m_enginePtr->m_timer_list[boost::this_thread::get_id()].push_back( timer1.elapsed() ); )
//current updates
for (pos[0]=m_start;pos[0]<=m_stop_h;++pos[0])
{
for (pos[1]=0;pos[1]<m_enginePtr->Op->numLines[1]-1;++pos[1])
{
for (pos[2]=0;pos[2]<m_enginePtr->Op->numLines[2]-1;++pos[2])
{
//do the updates here
//for x
m_enginePtr->curr[0][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->ii[0][pos[0]][pos[1]][pos[2]];
m_enginePtr->curr[0][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->iv[0][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->volt[2][pos[0]][pos[1]][pos[2]] - m_enginePtr->volt[2][pos[0]][pos[1]+1][pos[2]] - m_enginePtr->volt[1][pos[0]][pos[1]][pos[2]] + m_enginePtr->volt[1][pos[0]][pos[1]][pos[2]+1]);
//for y
m_enginePtr->curr[1][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->ii[1][pos[0]][pos[1]][pos[2]];
m_enginePtr->curr[1][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->iv[1][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->volt[0][pos[0]][pos[1]][pos[2]] - m_enginePtr->volt[0][pos[0]][pos[1]][pos[2]+1] - m_enginePtr->volt[2][pos[0]][pos[1]][pos[2]] + m_enginePtr->volt[2][pos[0]+1][pos[1]][pos[2]]);
//for x
m_enginePtr->curr[2][pos[0]][pos[1]][pos[2]] *= m_enginePtr->Op->ii[2][pos[0]][pos[1]][pos[2]];
m_enginePtr->curr[2][pos[0]][pos[1]][pos[2]] += m_enginePtr->Op->iv[2][pos[0]][pos[1]][pos[2]] * ( m_enginePtr->volt[1][pos[0]][pos[1]][pos[2]] - m_enginePtr->volt[1][pos[0]+1][pos[1]][pos[2]] - m_enginePtr->volt[0][pos[0]][pos[1]][pos[2]] + m_enginePtr->volt[0][pos[0]][pos[1]+1][pos[2]]);
}
}
}
// record time
DEBUG_TIME( m_enginePtr->m_timer_list[boost::this_thread::get_id()].push_back( timer1.elapsed() ); )
m_enginePtr->m_barrier3->wait();
// record time
DEBUG_TIME( m_enginePtr->m_timer_list[boost::this_thread::get_id()].push_back( timer1.elapsed() ); )
//soft current excitation here (H-field excite)
if (m_threadID == 0)
++m_enginePtr->numTS; // only the first thread increments numTS
}
m_enginePtr->m_stopBarrier->wait();
}
//DBG().cout() << "Thread " << m_threadID << " (" << boost::this_thread::get_id() << ") finished." << endl;
}
} // namespace
//
// *************************************************************************************************************************
//
namespace NS_Engine_Multithread {
thread_e_excitation::thread_e_excitation( Engine_Multithread* ptr )
{
m_enginePtr = ptr;
}
void thread_e_excitation::operator()()
{
//std::cout << "thread_e_excitation::operator()" << std::endl;
//DBG().cout() << "Thread e_excitation (" << boost::this_thread::get_id() << ") started." << endl;
int exc_pos;
const unsigned int E_Exc_Count = m_enginePtr->Op->E_Exc_Count;
while (!m_enginePtr->m_stopThreads)
{
// waiting on NS_Engine_Multithread::thread
m_enginePtr->m_barrier1->wait();
// soft voltage excitation here (E-field excite)
for (unsigned int n=0;n<E_Exc_Count;++n)
{
exc_pos = (int)m_enginePtr->numTS - (int)m_enginePtr->Op->E_Exc_delay[n];
exc_pos*= (exc_pos>0 && exc_pos<=(int)m_enginePtr->Op->ExciteLength);
m_enginePtr->volt[m_enginePtr->Op->E_Exc_dir[n]][m_enginePtr->Op->E_Exc_index[0][n]][m_enginePtr->Op->E_Exc_index[1][n]][m_enginePtr->Op->E_Exc_index[2][n]] += m_enginePtr->Op->E_Exc_amp[n]*m_enginePtr->Op->ExciteSignal[exc_pos];
}
// continue NS_Engine_Multithread::thread
m_enginePtr->m_barrier2->wait();
}
//DBG().cout() << "Thread e_excitation (" << boost::this_thread::get_id() << ") finished." << endl;
}
} // namespace

99
FDTD/engine_multithread.h Normal file
View File

@ -0,0 +1,99 @@
/*
* Copyright (C) 2010 Sebastian Held (sebastian.held@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ENGINE_MULTITHREAD_H
#define ENGINE_MULTITHREAD_H
#include "operator.h"
#include "engine.h"
#include <boost/thread.hpp>
#include <boost/fusion/include/list.hpp>
#include <boost/fusion/container/list/list_fwd.hpp>
#include <boost/fusion/include/list_fwd.hpp>
class Engine_Multithread;
namespace NS_Engine_Multithread {
class DBG { // debug
public:
DBG() {}
~DBG() { std::cout << os.str();}
std::ostringstream& cout() {return os;}
protected:
std::ostringstream os;
};
class Timer { //debug
public:
Timer() {gettimeofday(&t1,NULL);}
double elapsed() {gettimeofday(&t2,NULL); return (t2.tv_sec-t1.tv_sec) + (t2.tv_usec-t1.tv_usec)*1e-6;}
protected:
timeval t1,t2;
};
class thread {
public:
thread( Engine_Multithread* ptr, unsigned int start, unsigned int stop, unsigned int stop_h, unsigned int threadID );
void operator()();
protected:
unsigned int m_start, m_stop, m_stop_h, m_threadID;
Engine_Multithread *m_enginePtr;
};
class thread_e_excitation {
public:
thread_e_excitation( Engine_Multithread* ptr);
void operator()();
protected:
Engine_Multithread *m_enginePtr;
};
} // namespace
class Engine_Multithread : public Engine
{
friend class NS_Engine_Multithread::thread;
friend class NS_Engine_Multithread::thread_e_excitation;
public:
static Engine_Multithread* createEngine(const Operator* op, unsigned int numThreads = 0);
virtual ~Engine_Multithread();
virtual void setNumThreads( unsigned int numThreads );
virtual void Init();
virtual void Reset();
//!Iterate a number of timesteps
virtual bool IterateTS(unsigned int iterTS);
protected:
Engine_Multithread(const Operator* op);
boost::thread_group m_thread_group;
boost::barrier *m_barrier1, *m_barrier2, *m_barrier3, *m_startBarrier, *m_stopBarrier;
volatile unsigned int m_iterTS;
unsigned int m_numThreads; //!< number of worker threads
volatile bool m_stopThreads;
#ifdef ENABLE_DEBUG_TIME
std::map<boost::thread::id, std::vector<double> > m_timer_list;
#endif
};
#endif // ENGINE_MULTITHREAD_H

View File

@ -205,14 +205,14 @@ struct Operator::Grid_Path Operator::FindPath(double start[], double stop[])
return path; return path;
} }
double Operator::GetNumberCells() double Operator::GetNumberCells() const
{ {
if (numLines) if (numLines)
return (numLines[0])*(numLines[1])*(numLines[2]); //it's more like number of nodes??? return (numLines[0])*(numLines[1])*(numLines[2]); //it's more like number of nodes???
return 0; return 0;
} }
void Operator::ShowStat() void Operator::ShowStat() const
{ {
unsigned int OpSize = 12*numLines[0]*numLines[1]*numLines[2]*sizeof(FDTD_FLOAT); unsigned int OpSize = 12*numLines[0]*numLines[1]*numLines[2]*sizeof(FDTD_FLOAT);
unsigned int FieldSize = 6*numLines[0]*numLines[1]*numLines[2]*sizeof(FDTD_FLOAT); unsigned int FieldSize = 6*numLines[0]*numLines[1]*numLines[2]*sizeof(FDTD_FLOAT);
@ -248,6 +248,39 @@ unsigned int Operator::CalcGaussianPulsExcitation(double f0, double fc)
return GetNyquistNum(f0+fc); return GetNyquistNum(f0+fc);
} }
unsigned int Operator::CalcDiracPulsExcitation()
{
if (dT==0) return 0;
ExciteLength = 1;
// cerr << "Operator::CalcDiracPulsExcitation: Length of the excite signal: " << ExciteLength << " timesteps" << endl;
delete[] ExciteSignal;
ExciteSignal = new FDTD_FLOAT[ExciteLength+1];
ExciteSignal[0]=0.0;
ExciteSignal[1]=1.0;
// FIXME GetNyquistNum() has side-effects!
m_nyquistTS = 1;
return m_nyquistTS;
}
unsigned int Operator::CalcStepExcitation()
{
if (dT==0) return 0;
ExciteLength = 1;
delete[] ExciteSignal;
ExciteSignal = new FDTD_FLOAT[ExciteLength+1];
ExciteSignal[0]=1.0;
ExciteSignal[1]=1.0;
// FIXME GetNyquistNum() has side-effects!
m_nyquistTS = 1;
return m_nyquistTS;
}
unsigned int Operator::CalcSinusExcitation(double f0, int nTS) unsigned int Operator::CalcSinusExcitation(double f0, int nTS)
{ {
if (dT==0) return 0; if (dT==0) return 0;

View File

@ -41,15 +41,19 @@ public:
virtual unsigned int CalcGaussianPulsExcitation(double f0, double fc); virtual unsigned int CalcGaussianPulsExcitation(double f0, double fc);
//! Calculate a sinusoidal excitation with frequency f0 and a duration of nTS number of timesteps \return number of Nyquist timesteps //! Calculate a sinusoidal excitation with frequency f0 and a duration of nTS number of timesteps \return number of Nyquist timesteps
virtual unsigned int CalcSinusExcitation(double f0, int nTS); virtual unsigned int CalcSinusExcitation(double f0, int nTS);
//! Calculate a dirac impuls excitation \return number of Nyquist timesteps
virtual unsigned int CalcDiracPulsExcitation();
//! Calculate a step excitation \return number of Nyquist timesteps
virtual unsigned int CalcStepExcitation();
virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries
virtual void ApplyMagneticBC(bool* dirs); virtual void ApplyMagneticBC(bool* dirs);
double GetTimestep() {return dT;}; double GetTimestep() const {return dT;};
unsigned int GetNyquistNum(double fmax); unsigned int GetNyquistNum(double fmax);
double GetNumberCells(); double GetNumberCells() const;
void ShowStat(); void ShowStat() const;
void DumpOperator2File(string filename); void DumpOperator2File(string filename);
void DumpMaterial2File(string filename); void DumpMaterial2File(string filename);

View File

@ -31,7 +31,7 @@ public:
virtual void DefineStartStopCoord(double* dstart, double* dstop); virtual void DefineStartStopCoord(double* dstart, double* dstop);
void SetProcessInterval(unsigned int interval) {ProcessInterval=interval;} void SetProcessInterval(unsigned int interval) {ProcessInterval=max((unsigned int)1,interval);}
virtual int Process() {return GetNextInterval();} virtual int Process() {return GetNextInterval();}
//! If Disabled Process() will do nothing... //! If Disabled Process() will do nothing...

View File

@ -0,0 +1,152 @@
function pass = Coax
physical_constants;
ENABLE_PLOTS = 1;
CLEANUP = 0; % if enabled and result is PASS, remove simulation folder
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
% LIMITS
upper_error = 0.036; % max +3.6%
lower_error = 0; % max -0.0%
% structure
abs_length = 250;
length = 1000;
coax_rad_i = 100;
coax_rad_ai = 230;
coax_rad_aa = 240;
mesh_res = [5 5 5];
f_start = 0;
f_stop = 1e9;
Sim_Path = 'tmp';
Sim_CSX = 'coax.xml';
[status,message,messageid]=mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD(5e5,1e-6);
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
BC = [1 1 1 1 1 1] * 0;
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
CSX = InitCSX();
mesh.x = -2.5*mesh_res(1)-coax_rad_aa : mesh_res(1) : coax_rad_aa+2.5*mesh_res(1);
mesh.y = mesh.x;
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%create copper
CSX = AddMetal(CSX,'PEC');
%%%fake pml
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa);
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
%%% coax
start = [0, 0 , 0];stop = [0, 0 , length];
CSX = AddCylinder(CSX,'PEC',0 ,start,stop,coax_rad_i); % inner conductor
CSX = AddCylindricalShell(CSX,'PEC',0 ,start,stop,0.5*(coax_rad_aa+coax_rad_ai),(coax_rad_aa-coax_rad_ai)); % outer conductor
%%% add PML
start(3) = length-abs_length;
CSX = AddCylindricalShell(CSX,'pml',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i));
start(3) = 0; stop(3)=mesh_res(1)/2;
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = '(x)/(x*x+y*y)';
weight{2} = 'y/pow(rho,2)';
weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddCylindricalShell(CSX,'excite',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i));
%dump
CSX = AddDump(CSX,'Et_',0,2);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
CSX = AddBox(CSX,'Et_',0 , start,stop);
CSX = AddDump(CSX,'Ht_',1,2);
CSX = AddBox(CSX,'Ht_',0,start,stop);
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
start = [ coax_rad_i 0 length/2 ];stop = [ coax_rad_ai 0 length/2 ];
CSX = AddBox(CSX,'ut1', 0 ,start,stop);
%current calc
CSX = AddProbe(CSX,'it1',1);
mid = 0.5*(coax_rad_i+coax_rad_ai);
start = [ -mid -mid length/2 ];stop = [ mid mid length/2 ];
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatible xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
savePath = pwd();
cd(Sim_Path); %cd to working dir
invoke_openEMS( Sim_CSX );
UI = ReadUI( {'ut1','it1'} );
cd(savePath);
%
% analysis
%
f = UI.FD{2}.f;
u = UI.FD{1}.val;
i = UI.FD{2}.val;
f_idx_start = interp1( f, 1:numel(f), f_start, 'nearest' );
f_idx_stop = interp1( f, 1:numel(f), f_stop, 'nearest' );
f = f(f_idx_start:f_idx_stop);
u = u(f_idx_start:f_idx_stop);
i = i(f_idx_start:f_idx_stop);
Z = abs(u./i);
% analytic formular for characteristic impedance
Z0 = sqrt(MUE0/EPS0) * log(coax_rad_ai/coax_rad_i) / (2*pi);
upper_limit = Z0 * (1+upper_error);
lower_limit = Z0 * (1-lower_error);
if ENABLE_PLOTS
upper = upper_limit * ones(1,size(Z,2));
lower = lower_limit * ones(1,size(Z,2));
Z0_plot = Z0 * ones(1,size(Z,2));
figure
plot(f/1e9,[Z;upper;lower])
hold on
plot(f/1e9,Z0_plot,'m-.','LineWidth',2)
hold off
xlabel('Frequency (GHz)')
ylabel('Impedance (Ohm)')
legend( {'sim', 'upper limit', 'lower limit', 'theoretical'} );
end
pass = check_limits( Z, upper_limit, lower_limit );
if pass
disp( 'combinedtests/Coax.m (characteristic impedance): pass' );
else
disp( 'combinedtests/Coax.m (characteristic impedance): * FAILED *' );
end
if pass && CLEANUP
rmdir( [Sim_Path '/' Sim_CSX], 's' );
end
if ~pass && STOP_IF_FAILED
error 'test failed';
end

View File

@ -0,0 +1,3 @@
#
# These scripts test the full simulator (not single features)
#

View File

@ -0,0 +1,212 @@
function pass = cavity
physical_constants;
ENABLE_PLOTS = 1;
CLEANUP = 0; % if enabled and result is PASS, remove simulation folder
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
% LIMITS - inside
lower_rel_limit = 1.3e-3; % -0.13%
upper_rel_limit = 1.3e-3; % +0.13%
lower_rel_limit_TM = 2.5e-3; % -0.25%
upper_rel_limit_TM = 0; % +0%
min_rel_amplitude = 0.6; % 60%
min_rel_amplitude_TM = 0.27; % 27%
% LIMITS - outside
outer_rel_limit = 0.02;
max_rel_amplitude = 0.17;
% structure
a = 5e-2;
b = 2e-2;
d = 6e-2;
if ~((b<a) && (a<d))
error 'correct the dimensions of the cavity'
end
f_start = 1e9;
f_stop = 10e9;
Sim_Path = 'tmp';
Sim_CSX = 'cavity.xml';
[status,message,messageid]=mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD( 10000,1e-6 );
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
BC = [0 0 0 0 0 0]; % PEC boundaries
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
CSX = InitCSX();
grid_res = 2e-3;
mesh.x = 0:grid_res:a; %linspace(0,a,25);
mesh.y = 0:grid_res:b; %linspace(0,b,25);
mesh.z = 0:grid_res:d; %linspace(0,d,25);
CSX = DefineRectGrid(CSX, 1,mesh);
% excitation
CSX = AddExcitation(CSX,'excite1',0,[1 1 1]);
p(1,1) = mesh.x(floor(end*2/3));
p(2,1) = mesh.y(floor(end*2/3));
p(3,1) = mesh.z(floor(end*2/3));
p(1,2) = mesh.x(floor(end*2/3)+1);
p(2,2) = mesh.y(floor(end*2/3)+1);
p(3,2) = mesh.z(floor(end*2/3)+1);
CSX = AddCurve( CSX, 'excite1', 0, p );
%dump
% CSX = AddDump(CSX,'Et_',0,2);
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(end) mesh.z(end)];
% CSX = AddBox(CSX,'Et_',0 , pos1,pos2);
% %dump
% CSX = AddDump(CSX,'Et2_',0,2);
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(1) mesh.z(end)];
% CSX = AddBox(CSX,'Et2_',0 , pos1,pos2);
%
% %dump
% CSX = AddDump(CSX,'Et3_',0,2);
% pos1 = [mesh.x(1) mesh.y(end-1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(end-1) mesh.z(end)];
% CSX = AddBox(CSX,'Et3_',0 , pos1,pos2);
%voltage calc
CSX = AddProbe(CSX,'ut1x',0);
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/4)+1) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
CSX = AddBox(CSX,'ut1x', 0 ,pos1,pos2);
CSX = AddProbe(CSX,'ut1y',0);
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)+1) mesh.z(floor(end/5))];
CSX = AddBox(CSX,'ut1y', 0 ,pos1,pos2);
CSX = AddProbe(CSX,'ut1z',0);
pos1 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5)+1)];
CSX = AddBox(CSX,'ut1z', 0 ,pos1,pos2);
%Write openEMS compatible xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
savePath = pwd();
cd(Sim_Path); %cd to working dir
invoke_openEMS( Sim_CSX );
UI = ReadUI( {'ut1x', 'ut1y', 'ut1z'} );
cd(savePath);
%
% analysis
%
% remove excitation from time series
t_start = 7e-10; % FIXME to be calculated
t_idx_start = interp1( UI.TD{1}.t, 1:numel(UI.TD{1}.t), t_start, 'nearest' );
for n=1:numel(UI.TD)
UI.TD{n}.t = UI.TD{n}.t(t_idx_start:end);
UI.TD{n}.val = UI.TD{n}.val(t_idx_start:end);
[UI.FD{n}.f,UI.FD{n}.val] = FFT_time2freq( UI.TD{n}.t, UI.TD{n}.val );
end
f = UI.FD{1}.f;
ux = UI.FD{1}.val;
uy = UI.FD{2}.val;
uz = UI.FD{3}.val;
f_idx_start = interp1( f, 1:numel(f), f_start, 'nearest' );
f_idx_stop = interp1( f, 1:numel(f), f_stop, 'nearest' );
f = f(f_idx_start:f_idx_stop);
ux = ux(f_idx_start:f_idx_stop);
uy = uy(f_idx_start:f_idx_stop);
uz = uz(f_idx_start:f_idx_stop);
% analytic formula for resonant wavenumber
k = @(m,n,l) sqrt( (m*pi/a)^2 + (n*pi/b)^2 + (l*pi/d)^2 );
f_TE101 = c0/(2*pi) * k(1,0,1);
f_TE102 = c0/(2*pi) * k(1,0,2);
f_TE201 = c0/(2*pi) * k(2,0,1);
f_TE202 = c0/(2*pi) * k(2,0,2);
f_TM110 = c0/(2*pi) * k(1,1,0);
f_TM111 = c0/(2*pi) * k(1,1,1);
f_TE = [f_TE101 f_TE102 f_TE201 f_TE202];
f_TM = [f_TM110 f_TM111];
% calculate frequency limits
temp = [f_start f_TE f_stop];
f_outer1 = [];
f_outer2 = [];
for n=1:numel(temp)-1
f_outer1 = [f_outer1 temp(n) .* (1+outer_rel_limit)];
f_outer2 = [f_outer2 temp(n+1) .* (1-outer_rel_limit)];
end
temp = [f_start f_TM f_stop];
f_outer1_TM = [];
f_outer2_TM = [];
for n=1:numel(temp)-1
f_outer1_TM = [f_outer1_TM temp(n) .* (1+outer_rel_limit)];
f_outer2_TM = [f_outer2_TM temp(n+1) .* (1-outer_rel_limit)];
end
if ENABLE_PLOTS
figure
plot(f/1e9,abs(uy))
max1 = max(abs(uy));
hold on
plot( repmat(f_TE,2,1)/1e9, repmat([0; max1],1,numel(f_TE)), 'm-.', 'LineWidth', 2 )
plot( (repmat(f_TE,2,1) .* repmat(1-lower_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TE,2,1) .* repmat(1+upper_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TE,2,1) .* repmat([1-outer_rel_limit;1+outer_rel_limit],1,numel(f_TE)))/1e9, repmat(max1*min_rel_amplitude,2,numel(f_TE)), 'r-', 'LineWidth', 1 ) % freq limits
plot( [f_outer1;f_outer2]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1)), 'g-', 'LineWidth', 1 ) % amplitude limits
xlabel('Frequency (GHz)')
legend( {'u_y','theoretical'} )
title( 'TE-modes' )
figure
plot(f/1e9,abs(uz))
max1 = max(abs(uz));
hold on
plot( repmat(f_TM,2,1)/1e9, repmat([0; max1],1,numel(f_TM)), 'm-.', 'LineWidth', 2 )
plot( (repmat(f_TM,2,1) .* repmat(1-lower_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TM,2,1) .* repmat(1+upper_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TM,2,1) .* repmat([1-lower_rel_limit_TM;1+upper_rel_limit_TM],1,numel(f_TM)))/1e9, repmat(max1*min_rel_amplitude_TM,2,numel(f_TM)), 'r-', 'LineWidth', 1 ) % freq limits
plot( [f_outer1_TM;f_outer2_TM]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1_TM)), 'g-', 'LineWidth', 1 ) % amplitude limits
xlabel('Frequency (GHz)')
legend( {'u_z','theoretical'} )
title( 'TM-modes' )
end
pass1 = check_frequency( f, abs(uy), f_TE*(1+upper_rel_limit), f_TE*(1-lower_rel_limit), min_rel_amplitude, 'inside' );
pass2 = check_frequency( f, abs(uz), f_TM*(1+upper_rel_limit_TM), f_TM*(1-lower_rel_limit_TM), min_rel_amplitude_TM, 'inside' );
pass3 = check_frequency( f, abs(uy), f_outer2, f_outer1, max_rel_amplitude, 'outside' );
pass4 = check_frequency( f, abs(uz), f_outer2_TM, f_outer1_TM, max_rel_amplitude, 'outside' );
pass = pass1 && pass2 && pass3 && pass4;
if pass
disp( 'combinedtests/cavity.m (resonance frequency): pass' );
else
disp( 'combinedtests/cavity.m (resonance frequency): * FAILED *' );
end
if pass && CLEANUP
rmdir( [Sim_Path '/' Sim_CSX], 's' );
end
if ~pass && STOP_IF_FAILED
error 'test failed';
end

View File

@ -0,0 +1,31 @@
function pass = check_frequency( f, val, f_upper, f_lower, rel_amplitude, type )
pass = true;
max1 = max(val);
if numel(f_upper) ~= numel(f_lower)
error 'inconsistant vectors'
end
for n=1:numel(f_upper)
f1 = f_lower(n);
f2 = f_upper(n);
f1_idx = interp1( f, 1:numel(f), f1, 'nearest' );
% if f(f1_idx) < f1, f1_idx = f1_idx + 1; end
f2_idx = interp1( f, 1:numel(f), f2, 'nearest' );
% if f(f2_idx) > f2, f2_idx = f2_idx - 1; end
if strcmp( type, 'inside' )
if max( val(f1_idx:f2_idx) ) < max1 * rel_amplitude
pass = false;
return
end
elseif strcmp( type, 'outside' )
if max( val(f1_idx:f2_idx) ) > max1 * rel_amplitude
pass = false;
return
end
else
error 'unsupported operation'
end
end

View File

@ -0,0 +1,22 @@
function pass = check_limits( Z, upper_limit, lower_limit )
% make row vector
if size(Z,1) ~= 1
Z = Z.';
end
if numel(upper_limit) == 1
upper_limit = upper_limit * ones(1,size(Z,2));
end
if numel(lower_limit) == 1
lower_limit = lower_limit * ones(1,size(Z,2));
end
pass = 1;
if any( Z > upper_limit )
pass = 0;
end
if any( Z < lower_limit )
pass = 0;
end

View File

@ -0,0 +1,15 @@
function invoke_openEMS( opts )
if nargin < 1
opts = '';
end
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
filename = mfilename('fullpath');
dir = fileparts( filename );
openEMS_Path = [dir '/../../'];
command = [openEMS_Path 'openEMS.sh ' opts];
disp(command);
system(command);

View File

@ -0,0 +1,8 @@
%
% physical constants
%
% Bronstein 3rd ed., 1997, pp. 945-946
c0 = 299792458; % m/s
MUE0 = 4e-7*pi; % N/A^2
EPS0 = 1/(MUE0*c0^2); % F/m

View File

@ -1,4 +1,8 @@
function FDTD = SetBoundaryCond(FDTD,BC) function FDTD = SetBoundaryCond(FDTD,BC)
% FDTD = SetBoundaryCond(FDTD,BC)
%
% BC = [xmin xmax ymin ymax zmin zmax];
% ?min/?max: 0=PEC 1=PMC
FDTD.BoundaryCond.ATTRIBUTE.xmin=BC(1); FDTD.BoundaryCond.ATTRIBUTE.xmin=BC(1);
FDTD.BoundaryCond.ATTRIBUTE.xmax=BC(2); FDTD.BoundaryCond.ATTRIBUTE.xmax=BC(2);

View File

@ -1,7 +1,7 @@
# ------------------------------------------------- # -------------------------------------------------
# Project created by QtCreator 2010-02-26T22:34:51 # Project created by QtCreator 2010-02-26T22:34:51
# ------------------------------------------------- # -------------------------------------------------
QT -= gui QT -= gui core
TARGET = openEMS TARGET = openEMS
CONFIG += console CONFIG += console
CONFIG -= app_bundle CONFIG -= app_bundle
@ -14,11 +14,11 @@ LIBS += -L../CSXCAD \
-L../fparser \ -L../fparser \
-lfparser \ -lfparser \
-L../tinyxml \ -L../tinyxml \
-ltinyxml -ltinyxml \
-lboost_thread
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../CSXCAD\' QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../CSXCAD\'
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../fparser\' QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../fparser\'
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../tinyxml\' QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../tinyxml\'
SOURCES += main.cpp \ SOURCES += main.cpp \
tools/ErrorMsg.cpp \ tools/ErrorMsg.cpp \
tools/AdrOp.cpp \ tools/AdrOp.cpp \
@ -31,7 +31,8 @@ SOURCES += main.cpp \
FDTD/processfields_td.cpp \ FDTD/processfields_td.cpp \
FDTD/processcurrent.cpp \ FDTD/processcurrent.cpp \
examples/FDTD_examples.cpp \ examples/FDTD_examples.cpp \
openems.cpp openems.cpp \
FDTD/engine_multithread.cpp
HEADERS += tools/ErrorMsg.h \ HEADERS += tools/ErrorMsg.h \
tools/AdrOp.h \ tools/AdrOp.h \
tools/constants.h \ tools/constants.h \
@ -44,4 +45,8 @@ HEADERS += tools/ErrorMsg.h \
FDTD/processfields_td.h \ FDTD/processfields_td.h \
FDTD/processcurrent.h \ FDTD/processcurrent.h \
examples/FDTD_examples.h \ examples/FDTD_examples.h \
openems.h openems.h \
FDTD/engine_multithread.h
QMAKE_CXXFLAGS_RELEASE = -O2 -g -march=native
QMAKE_CXXFLAGS_DEBUG = -O0 -g -march=native

View File

@ -20,6 +20,7 @@
#include "tools/array_ops.h" #include "tools/array_ops.h"
#include "FDTD/operator.h" #include "FDTD/operator.h"
#include "FDTD/engine.h" #include "FDTD/engine.h"
#include "FDTD/engine_multithread.h"
#include "FDTD/processvoltage.h" #include "FDTD/processvoltage.h"
#include "FDTD/processcurrent.h" #include "FDTD/processcurrent.h"
#include "FDTD/processfields_td.h" #include "FDTD/processfields_td.h"
@ -32,8 +33,8 @@
double CalcDiffTime(timeval t1, timeval t2) double CalcDiffTime(timeval t1, timeval t2)
{ {
double s_diff = difftime(t1.tv_sec,t2.tv_sec); double s_diff = t1.tv_sec - t2.tv_sec;
s_diff += ((double)t1.tv_usec-(double)t2.tv_usec)*1e-6; s_diff += (t1.tv_usec-t2.tv_usec)*1e-6;
return s_diff; return s_diff;
} }
@ -46,27 +47,22 @@ openEMS::openEMS()
DebugMat = false; DebugMat = false;
DebugOp = false; DebugOp = false;
endCrit = 1e-6; endCrit = 1e-6;
m_engine = EngineType_Standard;
m_engine_numThreads = 0;
} }
openEMS::~openEMS() openEMS::~openEMS()
{ {
delete FDTD_Eng; Reset();
FDTD_Eng=NULL;
delete PA;
PA=NULL;
delete FDTD_Op;
FDTD_Op=NULL;
} }
void openEMS::Reset() void openEMS::Reset()
{ {
delete FDTD_Op;
FDTD_Op=NULL;
delete FDTD_Eng;
FDTD_Eng=NULL;
if (PA) PA->DeleteAll(); if (PA) PA->DeleteAll();
delete PA; delete PA; PA=0;
PA=NULL; delete FDTD_Eng; FDTD_Eng=0;
delete FDTD_Op; FDTD_Op=0;
} }
//! \brief processes a command line argument //! \brief processes a command line argument
@ -95,6 +91,18 @@ bool openEMS::parseCommandLineArgument( const char *argv )
DebugOperator(); DebugOperator();
return true; return true;
} }
else if (strcmp(argv,"--engine=multithreaded")==0)
{
cout << "openEMS - enabled multithreading" << endl;
m_engine = EngineType_Multithreaded;
return true;
}
else if (strncmp(argv,"--numThreads=",13)==0)
{
m_engine_numThreads = atoi(argv+13);
cout << "openEMS - fixed number of threads: " << m_engine_numThreads << endl;
return true;
}
return false; return false;
} }
@ -158,6 +166,11 @@ int openEMS::SetupFDTD(const char* file)
Excite->QueryDoubleAttribute("f0",&f0); Excite->QueryDoubleAttribute("f0",&f0);
fc = 0; fc = 0;
} }
else if (Excit_Type==2)
{
Excite->QueryDoubleAttribute("f0",&f0);
fc = 0;
}
TiXmlElement* BC = FDTD_Opts->FirstChildElement("BoundaryCond"); TiXmlElement* BC = FDTD_Opts->FirstChildElement("BoundaryCond");
if (BC==NULL) if (BC==NULL)
@ -210,6 +223,24 @@ int openEMS::SetupFDTD(const char* file)
exit(2); exit(2);
} }
} }
else if (Excit_Type==2)
{
Nyquist = FDTD_Op->CalcDiracPulsExcitation();
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else if (Excit_Type==3)
{
Nyquist = FDTD_Op->CalcStepExcitation();
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else else
{ {
cerr << "openEMS: Excitation type is unknown" << endl; cerr << "openEMS: Excitation type is unknown" << endl;
@ -234,7 +265,15 @@ int openEMS::SetupFDTD(const char* file)
cout << "Creation time for operator: " << difftime(OpDoneTime,startTime) << " s" << endl; cout << "Creation time for operator: " << difftime(OpDoneTime,startTime) << " s" << endl;
//create FDTD engine //create FDTD engine
FDTD_Eng = new Engine(FDTD_Op); switch (m_engine) {
case EngineType_Multithreaded:
FDTD_Eng = Engine_Multithread::createEngine(FDTD_Op,m_engine_numThreads);
break;
default:
FDTD_Eng = Engine::createEngine(FDTD_Op);
break;
}
time_t currTime = time(NULL); time_t currTime = time(NULL);
@ -317,17 +356,20 @@ void openEMS::RunFDTD()
{ {
cout << "Running FDTD engine... this may take a while... grab a cup of coffee?!?" << endl; cout << "Running FDTD engine... this may take a while... grab a cup of coffee?!?" << endl;
timeval currTime;
gettimeofday(&currTime,NULL);
timeval startTime = currTime;
timeval prevTime= currTime;
ProcessFields ProcField(FDTD_Op,FDTD_Eng); ProcessFields ProcField(FDTD_Op,FDTD_Eng);
double maxE=0,currE=0; double maxE=0,currE=0;
double change=1; double change=1;
int prevTS=0,currTS=0; int prevTS=0,currTS=0;
double speed = (double)FDTD_Op->GetNumberCells()/1e6; double speed = FDTD_Op->GetNumberCells()/1e6;
double t_diff; double t_diff;
timeval currTime;
gettimeofday(&currTime,NULL);
timeval startTime = currTime;
timeval prevTime= currTime;
//*************** simulate ************// //*************** simulate ************//
int step=PA->Process(); int step=PA->Process();
if ((step<0) || (step>(int)NrTS)) step=NrTS; if ((step<0) || (step>(int)NrTS)) step=NrTS;
while ((FDTD_Eng->GetNumberOfTimesteps()<NrTS) && (change>endCrit)) while ((FDTD_Eng->GetNumberOfTimesteps()<NrTS) && (change>endCrit))
@ -347,7 +389,7 @@ void openEMS::RunFDTD()
if (currE>maxE) if (currE>maxE)
maxE=currE; maxE=currE;
cout << "[@" << setw(8) << (int)CalcDiffTime(currTime,startTime) << "s] Timestep: " << setw(12) << currTS << " (" << setw(6) << setprecision(2) << std::fixed << (double)currTS/(double)NrTS*100.0 << "%)" ; cout << "[@" << setw(8) << (int)CalcDiffTime(currTime,startTime) << "s] Timestep: " << setw(12) << currTS << " (" << setw(6) << setprecision(2) << std::fixed << (double)currTS/(double)NrTS*100.0 << "%)" ;
cout << " with currently " << setw(6) << setprecision(1) << std::fixed << speed*(double)(currTS-prevTS)/t_diff << " MCells/s" ; cout << " with currently " << setw(6) << setprecision(1) << std::fixed << speed*(currTS-prevTS)/t_diff << " MCells/s" ;
if (maxE) if (maxE)
change = currE/maxE; change = currE/maxE;
cout << " --- Energy: ~" << setw(6) << setprecision(2) << std::scientific << currE << " (decrement: " << setw(6) << setprecision(2) << std::fixed << fabs(10.0*log10(change)) << "dB)" << endl; cout << " --- Energy: ~" << setw(6) << setprecision(2) << std::scientific << currE << " (decrement: " << setw(6) << setprecision(2) << std::fixed << fabs(10.0*log10(change)) << "dB)" << endl;

View File

@ -52,6 +52,10 @@ protected:
Operator* FDTD_Op; Operator* FDTD_Op;
Engine* FDTD_Eng; Engine* FDTD_Eng;
ProcessingArray* PA; ProcessingArray* PA;
enum EngineType {EngineType_Standard,EngineType_Multithreaded};
EngineType m_engine;
unsigned int m_engine_numThreads;
}; };
#endif // OPENEMS_H #endif // OPENEMS_H

View File

@ -18,7 +18,7 @@
#include "array_ops.h" #include "array_ops.h"
#include <ostream> #include <ostream>
FDTD_FLOAT*** Create3DArray(unsigned int* numLines) FDTD_FLOAT*** Create3DArray(const unsigned int* numLines)
{ {
FDTD_FLOAT*** array=NULL; FDTD_FLOAT*** array=NULL;
unsigned int pos[3]; unsigned int pos[3];
@ -38,7 +38,7 @@ FDTD_FLOAT*** Create3DArray(unsigned int* numLines)
return array; return array;
} }
void Delete3DArray(FDTD_FLOAT*** array, unsigned int* numLines) void Delete3DArray(FDTD_FLOAT*** array, const unsigned int* numLines)
{ {
if (array==NULL) return; if (array==NULL) return;
unsigned int pos[3]; unsigned int pos[3];
@ -53,7 +53,7 @@ void Delete3DArray(FDTD_FLOAT*** array, unsigned int* numLines)
delete[] array; delete[] array;
} }
FDTD_FLOAT**** Create_N_3DArray(unsigned int* numLines) FDTD_FLOAT**** Create_N_3DArray(const unsigned int* numLines)
{ {
FDTD_FLOAT**** array=NULL; FDTD_FLOAT**** array=NULL;
array = new FDTD_FLOAT***[3]; array = new FDTD_FLOAT***[3];
@ -64,7 +64,7 @@ FDTD_FLOAT**** Create_N_3DArray(unsigned int* numLines)
return array; return array;
} }
void Delete_N_3DArray(FDTD_FLOAT**** array, unsigned int* numLines) void Delete_N_3DArray(FDTD_FLOAT**** array, const unsigned int* numLines)
{ {
if (array==NULL) return; if (array==NULL) return;
unsigned int pos[3]; unsigned int pos[3];

View File

@ -20,12 +20,12 @@
#include "../FDTD/operator.h" #include "../FDTD/operator.h"
FDTD_FLOAT*** Create3DArray(unsigned int* numLines); FDTD_FLOAT*** Create3DArray(const unsigned int* numLines);
void Delete3DArray(FDTD_FLOAT*** array, unsigned int* numLines); void Delete3DArray(FDTD_FLOAT*** array, const unsigned int* numLines);
FDTD_FLOAT**** Create_N_3DArray(unsigned int* numLines); FDTD_FLOAT**** Create_N_3DArray(const unsigned int* numLines);
void Delete_N_3DArray(FDTD_FLOAT**** array, unsigned int* numLines); void Delete_N_3DArray(FDTD_FLOAT**** array, const unsigned int* numLines);
void Dump_N_3DArray2File(ostream &file, FDTD_FLOAT**** array, unsigned int* numLines); void Dump_N_3DArray2File(ostream &file, FDTD_FLOAT**** array, const unsigned int* numLines);
#endif // ARRAY_OPS_H #endif // ARRAY_OPS_H