simplified inf dipole example
parent
43179fb6e8
commit
5b8dfba6cf
|
@ -1,4 +1,3 @@
|
|||
function infDipol
|
||||
%
|
||||
% infinitesimal dipole example
|
||||
%
|
||||
|
@ -6,110 +5,71 @@ function infDipol
|
|||
close all
|
||||
clear
|
||||
clc
|
||||
drawnow
|
||||
|
||||
postprocessing_only = 0;
|
||||
|
||||
postprocessing_only = 1;
|
||||
|
||||
|
||||
|
||||
|
||||
global g
|
||||
setup
|
||||
|
||||
dipole_orientation = 3; % 1,2,3: x,y,z
|
||||
CSX = createStructure(dipole_orientation);
|
||||
if ~postprocessing_only
|
||||
writeCSX( CSX );
|
||||
CSXGeomPlot( [g.Sim_Path '/' g.Sim_CSX] )
|
||||
run;
|
||||
end
|
||||
postprocess;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
function setup
|
||||
global g
|
||||
physical_constants
|
||||
|
||||
% setup the simulation
|
||||
g.drawingunit = 1e-6; % specify everything in um
|
||||
g.Sim_Path = 'tmp';
|
||||
g.Sim_CSX = 'tmp.xml';
|
||||
drawingunit = 1e-6; % specify everything in um
|
||||
Sim_Path = 'tmp';
|
||||
Sim_CSX = 'tmp.xml';
|
||||
|
||||
g.f_max = 1e9;
|
||||
g.lambda = c0/g.f_max;
|
||||
f_max = 1e9;
|
||||
lambda = c0/f_max;
|
||||
|
||||
% setup geometry values
|
||||
g.dipole_length = g.lambda/50 /g.drawingunit;
|
||||
dipole_length = lambda/50 /drawingunit;
|
||||
|
||||
|
||||
dipole_orientation = 3; % 1,2,3: x,y,z
|
||||
|
||||
function CSX = createStructure(dipole_orientation)
|
||||
global g
|
||||
physical_constants
|
||||
|
||||
CSX = InitCSX();
|
||||
|
||||
% create an equidistant mesh
|
||||
mesh.x = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
|
||||
mesh.y = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
|
||||
mesh.z = -g.dipole_length*10:g.dipole_length/2:g.dipole_length*10;
|
||||
mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add space for PML
|
||||
CSX = DefineRectGrid( CSX, g.drawingunit, mesh );
|
||||
mesh.x = -dipole_length*10:dipole_length/2:dipole_length*10;
|
||||
mesh.y = -dipole_length*10:dipole_length/2:dipole_length*10;
|
||||
mesh.z = -dipole_length*10:dipole_length/2:dipole_length*10;
|
||||
|
||||
% excitation
|
||||
ex_vector = [0 0 0];
|
||||
ex_vector(dipole_orientation) = 1;
|
||||
start = ex_vector * -g.dipole_length/2;
|
||||
stop = ex_vector * g.dipole_length/2;
|
||||
start = ex_vector * -dipole_length/2;
|
||||
stop = ex_vector * dipole_length/2;
|
||||
CSX = AddExcitation( CSX, 'infDipole', 1, ex_vector );
|
||||
CSX = AddBox( CSX, 'infDipole', 1, start, stop );
|
||||
|
||||
% NFFF contour
|
||||
s1 = [-4.5, -4.5, -4.5] * g.dipole_length/2;
|
||||
s2 = [ 4.5, 4.5, 4.5] * g.dipole_length/2;
|
||||
[CSX g.nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', s1, s2);
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(1) ]
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(end) ]
|
||||
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
|
||||
|
||||
% add space for PML
|
||||
mesh = AddPML( mesh, [8 8 8 8 8 8] );
|
||||
% define the mesh
|
||||
CSX = DefineRectGrid( CSX, drawingunit, mesh );
|
||||
|
||||
if ~postprocessing_only
|
||||
% setup FDTD parameters & excitation function
|
||||
max_timesteps = 2000;
|
||||
min_decrement = 1e-6;
|
||||
FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling',10 );
|
||||
FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 );
|
||||
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
|
||||
FDTD = SetBoundaryCond( FDTD, BC );
|
||||
|
||||
% Write openEMS compatible xml-file
|
||||
[~,~,~] = rmdir(Sim_Path,'s');
|
||||
[~,~,~] = mkdir(Sim_Path);
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||||
|
||||
% define openEMS options and start simulation
|
||||
openEMS_opts = '';
|
||||
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
|
||||
end
|
||||
|
||||
|
||||
function writeCSX(CSX)
|
||||
global g
|
||||
% setup FDTD parameters & excitation function
|
||||
max_timesteps = 2000;
|
||||
min_decrement = 1e-6;
|
||||
FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling',10 );
|
||||
FDTD = SetGaussExcite( FDTD, g.f_max/2, g.f_max/2 );
|
||||
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'};
|
||||
FDTD = SetBoundaryCond( FDTD, BC );
|
||||
|
||||
% Write openEMS compatible xml-file
|
||||
[~,~,~] = rmdir(g.Sim_Path,'s');
|
||||
[~,~,~] = mkdir(g.Sim_Path);
|
||||
WriteOpenEMS([g.Sim_Path '/' g.Sim_CSX],FDTD,CSX);
|
||||
|
||||
|
||||
|
||||
|
||||
function run
|
||||
global g
|
||||
% define openEMS options and start simulation
|
||||
openEMS_opts = '';
|
||||
openEMS_opts = [openEMS_opts ' --engine=fastest'];
|
||||
RunOpenEMS( g.Sim_Path, g.Sim_CSX, openEMS_opts );
|
||||
|
||||
|
||||
|
||||
|
||||
function postprocess
|
||||
global g
|
||||
|
||||
%% post processing
|
||||
disp( ' ' );
|
||||
disp( ' ********************************************************** ' );
|
||||
disp( ' ' );
|
||||
|
@ -117,15 +77,13 @@ disp( ' ' );
|
|||
% calculate the far field at phi=0 degrees and at phi=90 degrees
|
||||
thetaRange = 0:2:359;
|
||||
r = 1; % evaluate fields at radius r
|
||||
disp( 'calculating far field at phi=[0 90] deg...' );
|
||||
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( g.Sim_Path, g.nf2ff, g.f_max, thetaRange, [0 90], r );
|
||||
|
||||
disp( 'calculating far field at phi=[0 90] deg..' );
|
||||
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, [0 90], r );
|
||||
|
||||
% display power and directivity
|
||||
disp( ['radiated power: Prad = ' num2str(Prad)] );
|
||||
disp( ['directivity: Dmax = ' num2str(Dmax)] );
|
||||
|
||||
|
||||
% calculate the e-field magnitude for phi = 0 deg
|
||||
E_phi0_far = zeros(1,numel(thetaRange));
|
||||
for n=1:numel(thetaRange)
|
||||
|
@ -139,7 +97,6 @@ ylabel( 'theta / deg' );
|
|||
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=0 deg'] );
|
||||
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
||||
|
||||
|
||||
% calculate the e-field magnitude for phi = 90 deg
|
||||
E_phi90_far = zeros(1,numel(thetaRange));
|
||||
for n=1:numel(thetaRange)
|
||||
|
@ -153,14 +110,11 @@ ylabel( 'theta / deg' );
|
|||
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=90 deg'] );
|
||||
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
||||
|
||||
|
||||
|
||||
|
||||
% calculate the far field at theta=90 degrees
|
||||
phiRange = 0:2:359;
|
||||
r = 1; % evaluate fields at radius r
|
||||
disp( 'calculating far field at theta=90 deg...' );
|
||||
[E_far_theta,E_far_phi] = AnalyzeNF2FF( g.Sim_Path, g.nf2ff, g.f_max, 90, phiRange, r );
|
||||
disp( 'calculating far field at theta=90 deg..' );
|
||||
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, 90, phiRange, r );
|
||||
|
||||
E_theta90_far = zeros(1,numel(phiRange));
|
||||
for n=1:numel(phiRange)
|
||||
|
@ -175,14 +129,12 @@ title( ['electrical far field (V/m) @r=' num2str(r) ' m theta=90 deg'] );
|
|||
legend( 'e-field magnitude', 'Location', 'BestOutside' );
|
||||
|
||||
|
||||
|
||||
|
||||
% calculate 3D pattern
|
||||
phiRange = 0:15:360;
|
||||
thetaRange = 0:10:180;
|
||||
r = 1; % evaluate fields at radius r
|
||||
disp( 'calculating 3D far field...' );
|
||||
[E_far_theta,E_far_phi] = AnalyzeNF2FF( g.Sim_Path, g.nf2ff, g.f_max, thetaRange, phiRange, r );
|
||||
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, phiRange, r );
|
||||
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
|
||||
E_far_normalized = E_far / max(E_far(:));
|
||||
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
|
||||
|
@ -195,3 +147,7 @@ axis equal
|
|||
xlabel( 'x' );
|
||||
ylabel( 'y' );
|
||||
zlabel( 'z' );
|
||||
|
||||
%
|
||||
DumpFF2VTK([Sim_Path '/FF_pattern.vtk'],E_far_normalized, thetaRange, phiRange);
|
||||
disp(['view the farfield pattern "' Sim_Path '/FF_pattern.vtk" using paraview' ]);
|
||||
|
|
Loading…
Reference in New Issue