matlab: update handling ports
Signed-off-by: Thorsten Liebig <Thorsten.Liebig@gmx.de>pull/1/head
parent
9367a8c091
commit
7b3ded8f22
|
@ -27,6 +27,9 @@ function [CSX,port] = AddCurvePort( CSX, prio, portnr, R, start, stop, excite, v
|
||||||
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
||||||
% See also InitCSX AddExcitation
|
% See also InitCSX AddExcitation
|
||||||
|
|
||||||
|
port.type='Lumped';
|
||||||
|
port.nr=portnr;
|
||||||
|
|
||||||
% make row vector
|
% make row vector
|
||||||
start = reshape( start, 1, [] );
|
start = reshape( start, 1, [] );
|
||||||
stop = reshape( stop , 1, [] );
|
stop = reshape( stop , 1, [] );
|
||||||
|
@ -98,12 +101,7 @@ m_stop(dir1) = m_stop(dir1) + delta1_p/2;
|
||||||
m_start(dir2) = m_start(dir2) - delta2_n/2;
|
m_start(dir2) = m_start(dir2) - delta2_n/2;
|
||||||
m_stop(dir2) = m_stop(dir2) + delta2_p/2;
|
m_stop(dir2) = m_stop(dir2) + delta2_p/2;
|
||||||
|
|
||||||
% calculate kappa
|
% calculate position of the voltage probe & excitation
|
||||||
materialname = ['port' num2str(portnr) '_sheet_resistance'];
|
|
||||||
CSX = AddLumpedElement( CSX, materialname, dir-1, 'R', R);
|
|
||||||
CSX = AddBox( CSX, materialname, prio, m_start, m_stop );
|
|
||||||
|
|
||||||
% calculate position of the voltage probe
|
|
||||||
v_start = [mesh{1}(port_start_idx(1)), mesh{2}(port_start_idx(2)), mesh{3}(port_start_idx(3))];
|
v_start = [mesh{1}(port_start_idx(1)), mesh{2}(port_start_idx(2)), mesh{3}(port_start_idx(3))];
|
||||||
v_stop = [mesh{1}(port_stop_idx(1)), mesh{2}(port_stop_idx(2)), mesh{3}(port_stop_idx(3))];
|
v_stop = [mesh{1}(port_stop_idx(1)), mesh{2}(port_stop_idx(2)), mesh{3}(port_stop_idx(3))];
|
||||||
|
|
||||||
|
@ -124,7 +122,6 @@ CSX = AddProbe( CSX, name, 1, weight );
|
||||||
CSX = AddBox( CSX, name, prio, i_start, i_stop );
|
CSX = AddBox( CSX, name, prio, i_start, i_stop );
|
||||||
|
|
||||||
% create port structure
|
% create port structure
|
||||||
port.nr = portnr;
|
|
||||||
port.drawingunit = unit;
|
port.drawingunit = unit;
|
||||||
% port.start = start;
|
% port.start = start;
|
||||||
% port.stop = stop;
|
% port.stop = stop;
|
||||||
|
@ -137,7 +134,6 @@ port.drawingunit = unit;
|
||||||
% port.idx_cal = idx_cal;
|
% port.idx_cal = idx_cal;
|
||||||
% port.idx1 = idx1;
|
% port.idx1 = idx1;
|
||||||
% port.idx1 = idx1;
|
% port.idx1 = idx1;
|
||||||
port.excite = 0;
|
|
||||||
|
|
||||||
if (nargin < 7)
|
if (nargin < 7)
|
||||||
excite = false;
|
excite = false;
|
||||||
|
@ -153,6 +149,8 @@ if ischar(excite)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
port.excite = excite;
|
||||||
|
|
||||||
% create excitation
|
% create excitation
|
||||||
if (excite)
|
if (excite)
|
||||||
% excitation of this port is enabled
|
% excitation of this port is enabled
|
||||||
|
@ -162,3 +160,11 @@ if (excite)
|
||||||
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, start_idx ~= stop_idx, varargin{:});
|
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, start_idx ~= stop_idx, varargin{:});
|
||||||
CSX = AddBox( CSX, ['port_excite_' num2str(portnr)], prio, e_start, e_stop );
|
CSX = AddBox( CSX, ['port_excite_' num2str(portnr)], prio, e_start, e_stop );
|
||||||
end
|
end
|
||||||
|
|
||||||
|
port.Feed_R = R;
|
||||||
|
if (R>0 && (~isinf(R)))
|
||||||
|
CSX = AddLumpedElement( CSX, ['port_resist_' int2str(portnr)], dir-1, 'R', R);
|
||||||
|
CSX = AddBox( CSX, ['port_resist_' int2str(portnr)], prio, v_start, v_stop );
|
||||||
|
elseif (R==0)
|
||||||
|
CSX = AddBox(CSX,metalname, prio, v_start, v_stop);
|
||||||
|
end
|
|
@ -1,5 +1,5 @@
|
||||||
function [CSX] = AddLumpedPort( CSX, prio, portnr, R, start, stop, dir, excite, varargin )
|
function [CSX, port] = AddLumpedPort( CSX, prio, portnr, R, start, stop, dir, excite, varargin )
|
||||||
% [CSX] = AddLumpedPort( CSX, prio, portnr, R, start, stop, dir, excite, varargin )
|
% [CSX, port] = AddLumpedPort( CSX, prio, portnr, R, start, stop, dir, excite, varargin )
|
||||||
%
|
%
|
||||||
% Add a 3D lumped port as an excitation.
|
% Add a 3D lumped port as an excitation.
|
||||||
%
|
%
|
||||||
|
@ -31,6 +31,9 @@ function [CSX] = AddLumpedPort( CSX, prio, portnr, R, start, stop, dir, excite,
|
||||||
|
|
||||||
% check dir
|
% check dir
|
||||||
|
|
||||||
|
port.type='Lumped';
|
||||||
|
port.nr=portnr;
|
||||||
|
|
||||||
if (dir(1)~=0) && (dir(2) == 0) && (dir(3)==0)
|
if (dir(1)~=0) && (dir(2) == 0) && (dir(3)==0)
|
||||||
n_dir = 1;
|
n_dir = 1;
|
||||||
elseif (dir(1)==0) && (dir(2) ~= 0) && (dir(3)==0)
|
elseif (dir(1)==0) && (dir(2) ~= 0) && (dir(3)==0)
|
||||||
|
@ -50,7 +53,9 @@ if (stop(n_dir)-start(n_dir)) > 0
|
||||||
else
|
else
|
||||||
direction = -1;
|
direction = -1;
|
||||||
end
|
end
|
||||||
|
port.direction = direction;
|
||||||
|
|
||||||
|
port.Feed_R = R;
|
||||||
if (R>0 && (~isinf(R)))
|
if (R>0 && (~isinf(R)))
|
||||||
CSX = AddLumpedElement(CSX,['port_resist_' int2str(portnr)], n_dir-1, 'Caps', 1, 'R', R);
|
CSX = AddLumpedElement(CSX,['port_resist_' int2str(portnr)], n_dir-1, 'Caps', 1, 'R', R);
|
||||||
CSX = AddBox(CSX,['port_resist_' int2str(portnr)], prio, start, stop);
|
CSX = AddBox(CSX,['port_resist_' int2str(portnr)], prio, start, stop);
|
||||||
|
@ -73,7 +78,7 @@ if ischar(excite)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
port.excite = excite;
|
||||||
% create excitation
|
% create excitation
|
||||||
if (excite)
|
if (excite)
|
||||||
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, -dir*direction, varargin{:});
|
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, -dir*direction, varargin{:});
|
||||||
|
|
|
@ -66,7 +66,7 @@ n_conv_arg = 8; % number of conventional arguments
|
||||||
|
|
||||||
%set defaults
|
%set defaults
|
||||||
feed_shift = 0;
|
feed_shift = 0;
|
||||||
feed_R = 0;
|
feed_R = inf; %(default is open, no resitance)
|
||||||
excite = false;
|
excite = false;
|
||||||
measplanepos = nan;
|
measplanepos = nan;
|
||||||
|
|
||||||
|
@ -215,6 +215,7 @@ if ((CSX.ATTRIBUTE.CoordSystem==1) && (idx_prop==2))
|
||||||
port.LengthScale = MSL_stop(idx_height);
|
port.LengthScale = MSL_stop(idx_height);
|
||||||
end
|
end
|
||||||
port.nr = portnr;
|
port.nr = portnr;
|
||||||
|
port.type = 'MSL';
|
||||||
port.drawingunit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit;
|
port.drawingunit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit;
|
||||||
port.v_delta = diff(meshlines)*port.LengthScale;
|
port.v_delta = diff(meshlines)*port.LengthScale;
|
||||||
port.i_delta = diff( meshlines(1:end-1) + diff(meshlines)/2 )*port.LengthScale;
|
port.i_delta = diff( meshlines(1:end-1) + diff(meshlines)/2 )*port.LengthScale;
|
||||||
|
@ -223,9 +224,7 @@ port.excite = 0;
|
||||||
port.measplanepos = abs(v2_start(idx_prop) - start(idx_prop))*port.LengthScale;
|
port.measplanepos = abs(v2_start(idx_prop) - start(idx_prop))*port.LengthScale;
|
||||||
% port
|
% port
|
||||||
|
|
||||||
% create excitation
|
% create excitation (if enabled) and port resistance
|
||||||
% excitation of this port is enabled
|
|
||||||
port.excite = 1;
|
|
||||||
meshline = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), start(idx_prop) + feed_shift*direction, 'nearest' );
|
meshline = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), start(idx_prop) + feed_shift*direction, 'nearest' );
|
||||||
ex_start(idx_prop) = mesh{idx_prop}(meshline) ;
|
ex_start(idx_prop) = mesh{idx_prop}(meshline) ;
|
||||||
ex_start(idx_width) = nstart(idx_width);
|
ex_start(idx_width) = nstart(idx_width);
|
||||||
|
@ -234,13 +233,26 @@ ex_stop(idx_prop) = ex_start(idx_prop);
|
||||||
ex_stop(idx_width) = nstop(idx_width);
|
ex_stop(idx_width) = nstop(idx_width);
|
||||||
ex_stop(idx_height) = nstop(idx_height);
|
ex_stop(idx_height) = nstop(idx_height);
|
||||||
|
|
||||||
|
port.excite = 0;
|
||||||
if excite
|
if excite
|
||||||
|
port.excite = 1;
|
||||||
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, evec, excite_args{:} );
|
CSX = AddExcitation( CSX, ['port_excite_' num2str(portnr)], 0, evec, excite_args{:} );
|
||||||
CSX = AddBox( CSX, ['port_excite_' num2str(portnr)], prio, ex_start, ex_stop );
|
CSX = AddBox( CSX, ['port_excite_' num2str(portnr)], prio, ex_start, ex_stop );
|
||||||
end
|
end
|
||||||
if feed_R > 0
|
|
||||||
|
%% MSL resitance at start of MSL line
|
||||||
|
ex_start(idx_prop) = start(idx_prop);
|
||||||
|
ex_stop(idx_prop) = ex_start(idx_prop);
|
||||||
|
|
||||||
|
if (feed_R > 0) && ~isinf(feed_R)
|
||||||
CSX = AddLumpedElement( CSX, 'port_R', idx_height-1, 'R', feed_R );
|
CSX = AddLumpedElement( CSX, 'port_R', idx_height-1, 'R', feed_R );
|
||||||
CSX = AddBox( CSX, 'port_R', prio, ex_start, ex_stop );
|
CSX = AddBox( CSX, 'port_R', prio, ex_start, ex_stop );
|
||||||
port.Feed_R = feed_R;
|
elseif isinf(feed_R)
|
||||||
|
% do nothing --> open port
|
||||||
|
elseif feed_R == 0
|
||||||
|
%port "resistance" as metal
|
||||||
|
CSX = AddBox( CSX, materialname, prio, ex_start, ex_stop );
|
||||||
|
else
|
||||||
|
error('openEMS:AddMSLPort','MSL port with resitance <= 0 it not possible');
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
|
@ -0,0 +1,84 @@
|
||||||
|
function [port] = calcLumpedPort( port, SimDir, f, varargin)
|
||||||
|
% [port] = calcLumpedPort( port, SimDir, f, varargin)
|
||||||
|
%
|
||||||
|
% Calculate voltages and currents of given lumped port.
|
||||||
|
%
|
||||||
|
% The port has to be created by e.g. AddLumpedPort().
|
||||||
|
%
|
||||||
|
% input:
|
||||||
|
% port: return value of e.g. AddMSLPort()
|
||||||
|
% SimDir: directory, where the simulation files are
|
||||||
|
% f: frequency vector for DFT
|
||||||
|
%
|
||||||
|
% variable input:
|
||||||
|
% 'RefImpedance': - use a given reference impedance to calculate inc and
|
||||||
|
% ref voltages and currents
|
||||||
|
% - default is given port or calculated line impedance
|
||||||
|
%
|
||||||
|
% output:
|
||||||
|
% port.f the given frequency fector
|
||||||
|
% port.uf.tot/inc/ref total, incoming and reflected voltage
|
||||||
|
% port.if.tot/inc/ref total, incoming and reflected current
|
||||||
|
%
|
||||||
|
% example:
|
||||||
|
% port{1} = calcLumpedPort( port{1}, Sim_Path, f, 'RefImpedance', 50);
|
||||||
|
%
|
||||||
|
% openEMS matlab interface
|
||||||
|
% -----------------------
|
||||||
|
% (C) 2012 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||||
|
%
|
||||||
|
% See also AddLumpedPort, calcPort
|
||||||
|
|
||||||
|
if (iscell(port))
|
||||||
|
for n=1:numel(port)
|
||||||
|
port{n}=calcLumpedPort(port{n}, SimDir, f, varargin{:});
|
||||||
|
end
|
||||||
|
return;
|
||||||
|
end
|
||||||
|
|
||||||
|
if (strcmpi(port.type,'Lumped')~=1 && strcmpi(port.type,'Curve')~=1)
|
||||||
|
error('openEMS:calcLumpedPort','error, type is not a lumped port');
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
n_conv_arg = 3; % number of conventional arguments
|
||||||
|
|
||||||
|
%set defaults
|
||||||
|
ref_ZL = port.Feed_R;
|
||||||
|
|
||||||
|
if (nargin>n_conv_arg)
|
||||||
|
for n=1:2:(nargin-n_conv_arg)
|
||||||
|
if (strcmp(varargin{n},'RefImpedance')==1);
|
||||||
|
ref_ZL = varargin{n+1};
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
% read time domain data
|
||||||
|
filename = ['port_ut' num2str(port.nr)];
|
||||||
|
U = ReadUI(filename, SimDir, f );
|
||||||
|
filename = ['port_it' num2str(port.nr)];
|
||||||
|
I = ReadUI(filename, SimDir, f );
|
||||||
|
|
||||||
|
% store the original frequency domain waveforms
|
||||||
|
u_f = U.FD{1}.val;
|
||||||
|
i_f = I.FD{1}.val; % shift to same position as v
|
||||||
|
|
||||||
|
port.f = f;
|
||||||
|
uf_inc = 0.5 * ( u_f + i_f .* ref_ZL );
|
||||||
|
if_inc = 0.5 * ( i_f + u_f ./ ref_ZL );
|
||||||
|
|
||||||
|
uf_ref = u_f - uf_inc;
|
||||||
|
if_ref = if_inc - i_f;
|
||||||
|
|
||||||
|
port.uf.tot = u_f;
|
||||||
|
port.uf.inc = uf_inc;
|
||||||
|
port.uf.ref = uf_ref;
|
||||||
|
|
||||||
|
port.if.tot = i_f;
|
||||||
|
port.if.inc = if_inc;
|
||||||
|
port.if.ref = if_ref;
|
||||||
|
|
||||||
|
port.raw.U = U;
|
||||||
|
port.raw.I = I;
|
|
@ -1,9 +1,11 @@
|
||||||
function [port] = calcPort( port, SimDir, f, varargin)
|
function [port] = calcPort( port, SimDir, f, varargin)
|
||||||
% [port] = calcPort( port, SimDir, f, varargin)
|
% [port] = calcPort( port, SimDir, f, varargin)
|
||||||
%
|
%
|
||||||
% Calculate voltages and currents, the propagation constant beta
|
% Calculate:
|
||||||
% and the characteristic impedance ZL of the given port.
|
% - voltages and currents
|
||||||
% The port has to be created by e.g. AddMSLPort().
|
% - the propagation constant and the characteristic impedance (if applicable)
|
||||||
|
%
|
||||||
|
% The port has to be created by e.g. AddMSLPort(), AddLumpedPort() or AddCurvePort
|
||||||
%
|
%
|
||||||
% input:
|
% input:
|
||||||
% port: return value of AddMSLPort()
|
% port: return value of AddMSLPort()
|
||||||
|
@ -14,122 +16,39 @@ function [port] = calcPort( port, SimDir, f, varargin)
|
||||||
% 'RefImpedance': - use a given reference impedance to calculate inc and
|
% 'RefImpedance': - use a given reference impedance to calculate inc and
|
||||||
% ref voltages and currents
|
% ref voltages and currents
|
||||||
% - default is given port or calculated line impedance
|
% - default is given port or calculated line impedance
|
||||||
% 'RefPlaneShift': - use a given reference plane shift from port beginning
|
% 'RefPlaneShift': for transmission lines only, See also calcTLPort for
|
||||||
% for a desired phase correction
|
% more details
|
||||||
% - default is the measurement plane
|
|
||||||
% - the plane shift has to be given in drawing units!
|
|
||||||
%
|
%
|
||||||
% output:
|
% output:
|
||||||
% port.f the given frequency fector
|
% port.f the given frequency fector
|
||||||
% port.uf.tot/inc/ref total, incoming and reflected voltage
|
% port.uf.tot/inc/ref total, incoming and reflected voltage
|
||||||
% port.if.tot/inc/ref total, incoming and reflected current
|
% port.if.tot/inc/ref total, incoming and reflected current
|
||||||
|
%
|
||||||
|
% if port is a transmission line port:
|
||||||
% port.beta: propagation constant
|
% port.beta: propagation constant
|
||||||
% port.ZL: characteristic line impedance
|
% port.ZL: characteristic line impedance
|
||||||
%
|
%
|
||||||
% example:
|
% example:
|
||||||
% port{1} = calcPort( port{1}, Sim_Path, f, 'RefImpedance', 50);
|
% port = calcPort(port, Sim_Path, f, 'RefImpedance', 50);
|
||||||
% or
|
|
||||||
%
|
|
||||||
% reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations",
|
|
||||||
% IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996
|
|
||||||
%
|
%
|
||||||
% openEMS matlab interface
|
% openEMS matlab interface
|
||||||
% -----------------------
|
% -----------------------
|
||||||
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
% (C) 2012 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||||
% See also AddMSLPort
|
%
|
||||||
|
% See also AddMSLPort, AddLumpedPort, AddCurvePort, calcTLPort, calcLumpedPort
|
||||||
|
|
||||||
%DEBUG
|
if (iscell(port))
|
||||||
% save('/tmp/test.mat', 'port', 'SimDir', 'f', 'nargin' )
|
for n=1:numel(port)
|
||||||
% load('/tmp/test.mat')
|
port{n}=calcPort(port{n}, SimDir, f, varargin{:});
|
||||||
|
end
|
||||||
% check
|
return;
|
||||||
if abs((port.v_delta(1) - port.v_delta(2)) / port.v_delta(1))>1e-6
|
|
||||||
warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' );
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
if strcmpi(port.type,'MSL')
|
||||||
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
port = calcTLPort( port, SimDir, f, varargin{:});
|
||||||
n_conv_arg = 3; % number of conventional arguments
|
return
|
||||||
|
elseif (strcmpi(port.type,'Lumped') || strcmpi(port.type,'Curve'))
|
||||||
%set defaults
|
port = calcLumpedPort( port, SimDir, f, varargin{:});
|
||||||
ref_ZL = 0;
|
return
|
||||||
ref_shift = nan;
|
|
||||||
|
|
||||||
if (nargin>n_conv_arg)
|
|
||||||
for n=1:2:(nargin-n_conv_arg)
|
|
||||||
if (strcmp(varargin{n},'RefPlaneShift')==1);
|
|
||||||
ref_shift = varargin{n+1};
|
|
||||||
end
|
|
||||||
|
|
||||||
if (strcmp(varargin{n},'RefImpedance')==1);
|
|
||||||
ref_ZL = varargin{n+1};
|
|
||||||
end
|
|
||||||
end
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% read time domain data
|
|
||||||
filename = ['port_ut' num2str(port.nr)];
|
|
||||||
U = ReadUI( {[filename 'A'],[filename 'B'],[filename 'C']}, SimDir, f );
|
|
||||||
filename = ['port_it' num2str(port.nr)];
|
|
||||||
I = ReadUI( {[filename 'A'],[filename 'B']}, SimDir, f );
|
|
||||||
|
|
||||||
% store the original frequency domain waveforms
|
|
||||||
u_f = U.FD{2}.val;
|
|
||||||
i_f = (I.FD{1}.val + I.FD{2}.val) / 2; % shift to same position as v
|
|
||||||
|
|
||||||
f = U.FD{2}.f;
|
|
||||||
Et = U.FD{2}.val;
|
|
||||||
dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(port.v_delta(1:2))) * port.drawingunit);
|
|
||||||
Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et
|
|
||||||
dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(port.i_delta(1)) * port.drawingunit);
|
|
||||||
|
|
||||||
beta = sqrt( - dEt .* dHt ./ (Ht .* Et) );
|
|
||||||
beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper)
|
|
||||||
|
|
||||||
% determine ZL
|
|
||||||
ZL = sqrt(Et .* dEt ./ (Ht .* dHt));
|
|
||||||
|
|
||||||
% reference plane shift (lossless)
|
|
||||||
if ~isnan(ref_shift)
|
|
||||||
ref_shift = ref_shift * port.LengthScale;
|
|
||||||
% shift to the beginning of MSL
|
|
||||||
ref_shift = ref_shift - port.measplanepos;
|
|
||||||
ref_shift = ref_shift * port.drawingunit;
|
|
||||||
|
|
||||||
% store the shifted frequency domain waveforms
|
|
||||||
phase = real(beta)*ref_shift;
|
|
||||||
U.FD{1}.val = u_f .* cos(-phase) + 1i * i_f.*ZL .* sin(-phase);
|
|
||||||
I.FD{1}.val = i_f .* cos(-phase) + 1i * u_f./ZL .* sin(-phase);
|
|
||||||
|
|
||||||
u_f = U.FD{1}.val;
|
|
||||||
i_f = I.FD{1}.val;
|
|
||||||
end
|
|
||||||
|
|
||||||
if (ref_ZL == 0)
|
|
||||||
if isfield(port,'Feed_R')
|
|
||||||
ref_ZL = port.Feed_R;
|
|
||||||
else
|
|
||||||
ref_ZL = ZL;
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
port.ZL = ZL;
|
|
||||||
port.beta = beta;
|
|
||||||
|
|
||||||
port.f = f;
|
|
||||||
uf_inc = 0.5 * ( u_f + i_f .* ref_ZL );
|
|
||||||
if_inc = 0.5 * ( i_f + u_f ./ ref_ZL );
|
|
||||||
|
|
||||||
uf_ref = u_f - uf_inc;
|
|
||||||
if_ref = if_inc - i_f;
|
|
||||||
|
|
||||||
port.uf.tot = u_f;
|
|
||||||
port.uf.inc = uf_inc;
|
|
||||||
port.uf.ref = uf_ref;
|
|
||||||
|
|
||||||
port.if.tot = i_f;
|
|
||||||
port.if.inc = if_inc;
|
|
||||||
port.if.ref = if_ref;
|
|
||||||
|
|
||||||
port.raw.U = U;
|
|
||||||
port.raw.I = I;
|
|
||||||
|
|
|
@ -0,0 +1,137 @@
|
||||||
|
function [port] = calcTLPort( port, SimDir, f, varargin)
|
||||||
|
% [port] = calcTLPort( port, SimDir, f, varargin)
|
||||||
|
%
|
||||||
|
% Calculate voltages and currents, the propagation constant beta
|
||||||
|
% and the characteristic impedance ZL of the given transmission line port.
|
||||||
|
%
|
||||||
|
% The port has to be created by e.g. AddMSLPort().
|
||||||
|
%
|
||||||
|
% input:
|
||||||
|
% port: return value of e.g. AddMSLPort()
|
||||||
|
% SimDir: directory, where the simulation files are
|
||||||
|
% f: frequency vector for DFT
|
||||||
|
%
|
||||||
|
% variable input:
|
||||||
|
% 'RefImpedance': - use a given reference impedance to calculate inc and
|
||||||
|
% ref voltages and currents
|
||||||
|
% - default is given port or calculated line impedance
|
||||||
|
% 'RefPlaneShift': - use a given reference plane shift from port beginning
|
||||||
|
% for a desired phase correction
|
||||||
|
% - default is the measurement plane
|
||||||
|
% - the plane shift has to be given in drawing units!
|
||||||
|
%
|
||||||
|
% output:
|
||||||
|
% port.f the given frequency fector
|
||||||
|
% port.uf.tot/inc/ref total, incoming and reflected voltage
|
||||||
|
% port.if.tot/inc/ref total, incoming and reflected current
|
||||||
|
% port.beta: propagation constant
|
||||||
|
% port.ZL: characteristic line impedance
|
||||||
|
%
|
||||||
|
% example:
|
||||||
|
% port{1} = calcTLPort( port{1}, Sim_Path, f, 'RefImpedance', 50);
|
||||||
|
%
|
||||||
|
% reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations",
|
||||||
|
% IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996
|
||||||
|
%
|
||||||
|
% openEMS matlab interface
|
||||||
|
% -----------------------
|
||||||
|
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
||||||
|
%
|
||||||
|
% See also AddMSLPort, calcPort
|
||||||
|
|
||||||
|
if (iscell(port))
|
||||||
|
for n=1:numel(port)
|
||||||
|
port{n}=calcTLPort(port{n}, SimDir, f, varargin{:});
|
||||||
|
end
|
||||||
|
return;
|
||||||
|
end
|
||||||
|
|
||||||
|
if (strcmpi(port.type,'MSL')~=1)
|
||||||
|
error('openEMS:calcTLPort','error, type is not a transmission line port');
|
||||||
|
end
|
||||||
|
|
||||||
|
% check
|
||||||
|
if abs((port.v_delta(1) - port.v_delta(2)) / port.v_delta(1))>1e-6
|
||||||
|
warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' );
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
n_conv_arg = 3; % number of conventional arguments
|
||||||
|
|
||||||
|
%set defaults
|
||||||
|
ref_ZL = -1;
|
||||||
|
ref_shift = nan;
|
||||||
|
if (nargin>n_conv_arg)
|
||||||
|
for n=1:2:(nargin-n_conv_arg)
|
||||||
|
if (strcmp(varargin{n},'RefPlaneShift')==1);
|
||||||
|
ref_shift = varargin{n+1};
|
||||||
|
end
|
||||||
|
if (strcmp(varargin{n},'RefImpedance')==1);
|
||||||
|
ref_ZL = varargin{n+1};
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
% read time domain data
|
||||||
|
filename = ['port_ut' num2str(port.nr)];
|
||||||
|
U = ReadUI( {[filename 'A'],[filename 'B'],[filename 'C']}, SimDir, f );
|
||||||
|
filename = ['port_it' num2str(port.nr)];
|
||||||
|
I = ReadUI( {[filename 'A'],[filename 'B']}, SimDir, f );
|
||||||
|
|
||||||
|
% store the original frequency domain waveforms
|
||||||
|
u_f = U.FD{2}.val;
|
||||||
|
i_f = (I.FD{1}.val + I.FD{2}.val) / 2; % shift to same position as v
|
||||||
|
|
||||||
|
f = U.FD{2}.f;
|
||||||
|
Et = U.FD{2}.val;
|
||||||
|
dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(port.v_delta(1:2))) * port.drawingunit);
|
||||||
|
Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et
|
||||||
|
dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(port.i_delta(1)) * port.drawingunit);
|
||||||
|
|
||||||
|
beta = sqrt( - dEt .* dHt ./ (Ht .* Et) );
|
||||||
|
beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper)
|
||||||
|
|
||||||
|
% determine ZL
|
||||||
|
ZL = sqrt(Et .* dEt ./ (Ht .* dHt));
|
||||||
|
|
||||||
|
% reference plane shift (lossless)
|
||||||
|
if ~isnan(ref_shift)
|
||||||
|
ref_shift = ref_shift * port.LengthScale;
|
||||||
|
% shift to the beginning of MSL
|
||||||
|
ref_shift = ref_shift - port.measplanepos;
|
||||||
|
ref_shift = ref_shift * port.drawingunit;
|
||||||
|
|
||||||
|
% store the shifted frequency domain waveforms
|
||||||
|
phase = real(beta)*ref_shift;
|
||||||
|
U.FD{1}.val = u_f .* cos(-phase) + 1i * i_f.*ZL .* sin(-phase);
|
||||||
|
I.FD{1}.val = i_f .* cos(-phase) + 1i * u_f./ZL .* sin(-phase);
|
||||||
|
|
||||||
|
u_f = U.FD{1}.val;
|
||||||
|
i_f = I.FD{1}.val;
|
||||||
|
end
|
||||||
|
|
||||||
|
if (ref_ZL < 0)
|
||||||
|
ref_ZL = ZL;
|
||||||
|
end
|
||||||
|
|
||||||
|
port.ZL = ZL;
|
||||||
|
port.beta = beta;
|
||||||
|
|
||||||
|
port.f = f;
|
||||||
|
uf_inc = 0.5 * ( u_f + i_f .* ref_ZL );
|
||||||
|
if_inc = 0.5 * ( i_f + u_f ./ ref_ZL );
|
||||||
|
|
||||||
|
uf_ref = u_f - uf_inc;
|
||||||
|
if_ref = if_inc - i_f;
|
||||||
|
|
||||||
|
port.uf.tot = u_f;
|
||||||
|
port.uf.inc = uf_inc;
|
||||||
|
port.uf.ref = uf_ref;
|
||||||
|
|
||||||
|
port.if.tot = i_f;
|
||||||
|
port.if.inc = if_inc;
|
||||||
|
port.if.ref = if_ref;
|
||||||
|
|
||||||
|
port.raw.U = U;
|
||||||
|
port.raw.I = I;
|
Loading…
Reference in New Issue