CylinderCoords: include r=0 and many fixes & necessary changes

- r=0 case included... needs lots of testing...
 - field processing can't access mesh directly --> use operator methods
pull/1/head
Thorsten Liebig 2010-04-13 18:40:43 +02:00
parent 22210247f4
commit 86832d0d3a
9 changed files with 237 additions and 92 deletions

View File

@ -46,7 +46,28 @@ inline void Engine_Cylinder::CloseAlphaVoltages()
volt[1][pos[0]][0][pos[2]] = volt[1][pos[0]][last_A_Line][pos[2]];
volt[2][pos[0]][0][pos[2]] = volt[2][pos[0]][last_A_Line][pos[2]];
}
}
}
void Engine_Cylinder::R0IncludeVoltages()
{
unsigned int pos[3];
pos[0] = 0;
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
volt[2][0][0][pos[2]] *= cyl_Op->vv_R0[pos[2]];
for (pos[1]=0;pos[1]<numLines[1]-cyl_Op->GetClosedAlpha();++pos[1])
{
volt[2][0][0][pos[2]] += cyl_Op->vi_R0[pos[2]] * curr[1][0][pos[1]][pos[2]];
}
}
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
volt[1][0][pos[1]][pos[2]] = 0; //no voltage in alpha-direction at r=0
volt[2][0][pos[1]][pos[2]] = volt[2][0][0][pos[2]];
}
}
}
@ -74,6 +95,10 @@ bool Engine_Cylinder::IterateTS(unsigned int iterTS)
for (unsigned int iter=0;iter<iterTS;++iter)
{
UpdateVoltages();
if (cyl_Op->GetR0Included())
R0IncludeVoltages();
ApplyVoltageExcite();
CloseAlphaVoltages();

View File

@ -35,6 +35,8 @@ protected:
virtual inline void CloseAlphaVoltages();
virtual inline void CloseAlphaCurrents();
virtual inline void R0IncludeVoltages();
const Operator_Cylinder* cyl_Op;
};

View File

@ -102,6 +102,42 @@ unsigned int Operator::CalcNyquistNum(double fmax)
return floor(T0/2/dT);
}
double Operator::GetMeshDelta(int n, unsigned int* pos, bool dualMesh) const
{
if ((n<0) || (n>2)) return 0.0;
int i_pos[] = {pos[0],pos[1],pos[2]};
return GetMeshDelta(n,i_pos,dualMesh);
}
double Operator::GetMeshDelta(int n, int* pos, bool dualMesh) const
{
if ((n<0) || (n>2)) return 0.0;
if (dualMesh==false)
return fabs(MainOp->GetIndexDelta(n,pos[n]))*gridDelta;
else
return fabs(MainOp->GetIndexWidth(n,pos[n]))*gridDelta;
}
double Operator::GetDiscLine(int n, unsigned int pos, bool dualMesh) const
{
return GetDiscLine(n,(int)pos,dualMesh);
}
double Operator::GetDiscLine(int n, int pos, bool dualMesh) const
{
if ((n<0) || (n>2)) return 0.0;
if ((pos<0) || (pos>=(int)numLines[n])) return 0.0;
if (dualMesh==false)
return discLines[n][pos];
else
{
if (pos<(int)numLines[n]-1)
return 0.5*(discLines[n][pos+1]+discLines[n][pos]);
else
return 0.5*(discLines[n][pos]+discLines[n][pos-1]);
}
}
bool Operator::SnapToMesh(double* dcoord, unsigned int* uicoord, bool lower, bool* inside)
{
bool ok=true;
@ -451,6 +487,7 @@ bool Operator::SetGeometryCSX(ContinuousStructure* geo)
for (int n=0;n<3;++n)
{
discLines[n] = grid->GetLines(n,discLines[n],numLines[n],true);
if (n==1)
if (numLines[n]<3) {cerr << "CartOperator::SetGeometryCSX: you need at least 3 disc-lines in every direction (3D!)!!!" << endl; Reset(); return false;}
}
MainOp = new AdrOp(numLines[0],numLines[1],numLines[2]);
@ -821,11 +858,16 @@ double Operator::CalcTimestep()
ipos_PPM= MainOp->Shift(nPP,-1);
MainOp->ResetShift();
newT = 2/sqrt( ( 4/EC_L[nP][ipos] + 4/EC_L[nP][ipos_PPM] + 4/EC_L[nPP][ipos] + 4/EC_L[nPP][ipos_PM]) / EC_C[n][ipos] );
if (newT<dT) dT=newT;
if ((newT<dT) && (newT>0.0)) dT=newT;
}
}
}
}
if (dT==0)
{
cerr << "Operator::CalcTimestep: Timestep is zero... this is not supposed to happen!!! exit!" << endl;
exit(3);
}
// cerr << "Operator Timestep: " << dT << endl;
return 0;
}
@ -852,13 +894,11 @@ bool Operator::CalcEFieldExcitation()
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
delta[0]=fabs(MainOp->GetIndexDelta(0,pos[0]));
for (int n=0;n<3;++n)
{
coord[0] = discLines[0][pos[0]];
coord[1] = discLines[1][pos[1]];
coord[2] = discLines[2][pos[2]];
// CSProperties* prop = CSX->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::ELECTRODE | CSProperties::METAL));
CSProperties* prop = NULL;
for (int n=0;n<3;++n)
{
coord[n]+=delta[n]*0.5;
CSProperties* prop = CSX->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::ELECTRODE));
if (prop)
@ -866,9 +906,9 @@ bool Operator::CalcEFieldExcitation()
CSPropElectrode* elec = prop->ToElectrode();
if (elec!=NULL)
{
if ((elec->GetActiveDir(n)) && (pos[n]<numLines[n]-1))
if ((elec->GetActiveDir(n)) )//&& (pos[n]<numLines[n]-1))
{
amp = elec->GetWeightedExcitation(n,coord)*delta[n]*gridDelta;
amp = elec->GetWeightedExcitation(n,coord)*GetMeshDelta(n,pos);// delta[n]*gridDelta;
if (amp!=0)
{
vExcit.push_back(amp);
@ -886,7 +926,6 @@ bool Operator::CalcEFieldExcitation()
}
}
}
coord[n]-=delta[n]*0.5;
}
}
}

View File

@ -59,7 +59,7 @@ public:
virtual unsigned int GetNumberOfLines(int ny) const {return numLines[ny];}
void SetNyquistNum(unsigned int nyquist) {m_nyquistTS=nyquist;}
unsigned int GetNyquistNum() const {return m_nyquistTS;};
unsigned int GetNyquistNum() const {return m_nyquistTS;}
unsigned int CalcNyquistNum(double fmax);
void ShowStat() const;
@ -67,15 +67,22 @@ public:
void DumpOperator2File(string filename);
void DumpMaterial2File(string filename);
virtual void Reset();
virtual double GetGridDelta() const {return gridDelta;}
//! Get the mesh delta times the grid delta for a 3D position
virtual double GetMeshDelta(int n, int* pos, bool dualMesh=false) const;
virtual double GetMeshDelta(int n, unsigned int* pos, bool dualMesh=false) const;
bool SnapToMesh(double* coord, unsigned int* uicoord, bool lower=false, bool* inside=NULL);
//! Get the disc line in n direction
virtual double GetDiscLine(int n, int pos, bool dualMesh=false) const;
virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const;
virtual bool SnapToMesh(double* coord, unsigned int* uicoord, bool lower=false, bool* inside=NULL);
protected:
//! use New() for creating a new Operator
Operator();
virtual void Init();
virtual void Reset();
virtual void InitOperator();
struct Grid_Path
@ -111,14 +118,13 @@ protected:
double* EC_R[3];
unsigned int numLines[3];
// engine/post-proc needs access
public:
double* discLines[3];
double gridDelta;
AdrOp* MainOp;
AdrOp* DualOp;
// engine/post-proc needs access
public:
//EC operator
FDTD_FLOAT**** vv; //calc new voltage from old voltage
FDTD_FLOAT**** vi; //calc new voltage from old current

View File

@ -37,12 +37,26 @@ void Operator_Cylinder::Init()
{
CC_closedAlpha = false;
CC_R0_included = false;
vv_R0 = NULL;
vi_R0 = NULL;
Operator::Init();
}
void Operator_Cylinder::Reset()
{
Operator::Reset();
delete[] vv_R0;vv_R0=NULL;
delete[] vi_R0;vi_R0=NULL;
}
void Operator_Cylinder::InitOperator()
{
if (CC_R0_included)
{
vv_R0 = new FDTD_FLOAT[numLines[2]];
vi_R0 = new FDTD_FLOAT[numLines[2]];
}
Operator::InitOperator();
}
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
@ -54,13 +68,23 @@ inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
return numLines[ny];
}
double Operator_Cylinder::GetMeshDelta(int n, int* pos, bool dualMesh) const
{
double delta = Operator::GetMeshDelta(n,pos,dualMesh);
if (delta==0) return delta;
if (n==1)
{
return delta * GetDiscLine(n,pos[0],dualMesh);
}
return delta;
}
bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
{
if (Operator::SetGeometryCSX(geo)==false) return false;
double minmaxA = fabs(discLines[1][numLines[1]-1]-discLines[1][0]);
// cerr << minmaxA -2*PI << " < " << (2*PI)/10/numLines[1] << endl;
if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width
{
cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl;
@ -87,13 +111,41 @@ bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
else if (discLines[0][0]==0.0)
{
cout << "Operator_Cylinder::SetGeometryCSX: r=0 included..." << endl;
cerr << "Operator_Cylinder::SetGeometryCSX: r=0 included not yet implemented... exit... " << endl; exit(1);
CC_R0_included=true;
}
return true;
}
int Operator_Cylinder::CalcECOperator()
{
int val = Operator::CalcECOperator();
if (val)
return val;
if (CC_R0_included==false)
return val;
unsigned int pos[3];
double inEC[4];
pos[0]=0;
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
double C=0;
double G=0;
for (pos[1]=0;pos[1]<numLines[1]-CC_closedAlpha;++pos[1])
{
Calc_ECPos(2,pos,inEC);
C+=inEC[0];
G+=inEC[1];
}
cerr << C << " and " << G << endl;
vv_R0[pos[2]] = (1-dT*G/2/C)/(1+dT*G/2/C);
vi_R0[pos[2]] = (dT/C)/(1+dT*G/2/C);
}
return 0;
}
inline void Operator_Cylinder::Calc_ECOperatorPos(int n, unsigned int* pos)
{
unsigned int i = MainOp->SetPos(pos[0],pos[1],pos[2]);
@ -118,6 +170,12 @@ inline void Operator_Cylinder::Calc_ECOperatorPos(int n, unsigned int* pos)
ii[n][pos[0]][pos[1]][pos[2]] = 0;
iv[n][pos[0]][pos[1]][pos[2]] = 0;
}
if (CC_R0_included && (n==2) && (pos[0]==0))
{
vv[n][pos[0]][pos[1]][pos[2]] = 1;
vi[n][pos[0]][pos[1]][pos[2]] = 0;
}
}
void Operator_Cylinder::ApplyElectricBC(bool* dirs)
@ -165,7 +223,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
double delta_M=MainOp->GetIndexDelta(n,pos[n]-1);
double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1);
double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1);
double geom_factor,A_n;
double geom_factor=0,A_n=0;
//******************************* epsilon,kappa averaging *****************************//
//shift up-right
@ -176,13 +234,13 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
switch (n)
{
case 0:
geom_factor = fabs(deltaPP*deltaP/delta)*(coord[0]+fabs(delta)/2)*0.25;
geom_factor = fabs((deltaPP*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP*deltaPP/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs(deltaPP/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0))*0.25;
geom_factor = fabs((deltaPP/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
@ -206,13 +264,13 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
switch (n)
{
case 0:
geom_factor = fabs(deltaPP*deltaP_M/delta)*(coord[0]+fabs(delta)/2)*0.25;
geom_factor = fabs((deltaPP*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP_M*deltaPP/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs(deltaPP/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0))*0.25;
geom_factor = fabs((deltaPP/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
@ -236,13 +294,13 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
switch (n)
{
case 0:
geom_factor = fabs(deltaPP_M*deltaP/delta)*(coord[0]+fabs(delta)/2)*0.25;
geom_factor = fabs((deltaPP_M*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP*deltaPP_M/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs(deltaPP_M/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0))*0.25;
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
@ -266,13 +324,13 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
switch (n)
{
case 0:
geom_factor = fabs(deltaPP_M*deltaP_M/delta)*(coord[0]+fabs(delta)/2)*0.25;
geom_factor = fabs((deltaPP_M*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP_M*deltaPP_M/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs(deltaPP_M/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0))*0.25;
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
@ -288,15 +346,12 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
inEC[1] += 0;
}
if (CC_R0_included && (n>0) && (coord[0]==0))
if (CC_R0_included && (n==1) && (coord[0]==0))
{
inEC[0]=0;
inEC[1]=0;
}
// if ((n==2) && (pos[1]==0) && (pos[2]==0))
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[0] << endl;
//******************************* mu,sigma averaging *****************************//
//shift down
shiftCoord[n] = coord[n]-delta_M*0.25;
@ -306,7 +361,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
double delta_n = fabs(delta_M);
if (n==1)
{
delta_n = delta_n * (coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
}
if (prop)
{
@ -330,7 +385,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
delta_n = fabs(delta);
if (n==1)
{
delta_n = delta_n * (coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
}
if (prop)
{
@ -360,7 +415,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
inEC[2] = gridDelta * A_n * 2 * __MUE0__ / inEC[2];
if (inEC[3]) inEC[3]=gridDelta * A_n * 2 / inEC[3];
// if ((n==0) && (pos[1]==0) && (pos[2]==0))
// if ((n==1) && (pos[1]==0) && (pos[2]==0))
// cerr << inEC[2]/(coord[0]) << endl;
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[2] << endl;
@ -369,28 +424,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
bool Operator_Cylinder::Calc_EffMatPos(int n, unsigned int* pos, double* inMat)
{
return false; //fixme
// int nP = (n+1)%3;
// int nPP = (n+2)%3;
//
// unsigned int ipos = MainOp->SetPos(pos[0],pos[1],pos[2]);
// double delta=MainOp->GetIndexDelta(n,pos[n]);
// double deltaP=MainOp->GetIndexDelta(nP,pos[nP]);
// double deltaPP=MainOp->GetIndexDelta(nPP,pos[nPP]);
//
// double delta_M=MainOp->GetIndexDelta(n,pos[n]-1);
// double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1);
// double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1);
//
// this->Calc_ECPos(n,pos,inMat);
//
// inMat[0] *= (delta*delta)/MainOp->GetNodeVolume(ipos)/gridDelta;
// inMat[1] *= (delta*delta)/MainOp->GetNodeVolume(ipos)/gridDelta;
//
// inMat[2] *= 0.5*(fabs(delta_M) + fabs(delta)) / fabs(deltaP*deltaPP) / gridDelta;
// inMat[3] *= 0.5*(fabs(delta_M) + fabs(delta)) / fabs(deltaP*deltaPP) / gridDelta;
//
// return true;
cerr << "Operator_Cylinder::Calc_EffMatPos: Warning! method not implemented yet..." << endl;
return false;
}

View File

@ -28,19 +28,24 @@ public:
virtual bool SetGeometryCSX(ContinuousStructure* geo);
virtual int CalcECOperator();
virtual void ApplyElectricBC(bool* dirs);
virtual void ApplyMagneticBC(bool* dirs);
virtual void Reset();
virtual unsigned int GetNumberOfLines(int ny) const;
//! Get the mesh delta times the grid delta for a 3D position, including radius corrected alpha-mesh width
virtual double GetMeshDelta(int n, int* pos, bool dualMesh=false) const;
bool GetClosedAlpha() const {return CC_closedAlpha;}
bool GetR0Included() const {return CC_R0_included;}
protected:
Operator_Cylinder();
virtual void Init();
virtual void InitOperator();
virtual void Reset();
virtual inline void Calc_ECOperatorPos(int n, unsigned int* pos);
@ -49,6 +54,12 @@ protected:
virtual bool Calc_ECPos(int n, unsigned int* pos, double* inEC);
virtual bool Calc_EffMatPos(int n, unsigned int* pos, double* inMat);
public:
//special EC operator for R0
FDTD_FLOAT* vv_R0; //calc new voltage from old voltage
FDTD_FLOAT* vi_R0; //calc new voltage from old current
};
#endif // OPERATOR_CYLINDER_H

View File

@ -128,7 +128,7 @@ void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
lines.clear();
for (unsigned int i=start[n];i<=stop[n];i+=subSample[n])
{
lines.push_back(Op->discLines[n][i]);
lines.push_back(Op->GetDiscLine(n,i));//Op->discLines[n][i]);
}
numLines[n] = lines.size();
delete[] discLines[n];
@ -156,7 +156,7 @@ void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
lines.clear();
for (unsigned int i=start[n];i<stop[n];i+=subSample[n])
{
lines.push_back(0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
lines.push_back(Op->GetDiscLine(n,i,true));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
}
numDLines[n] = lines.size();
delete[] discDLines[n];
@ -280,7 +280,7 @@ void ProcessFields::WriteVTKScalarArray(ofstream &file, string name, FDTD_FLOAT*
{
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
file << array[pos[0]][pos[1]][pos[2]] << " ";
file << setprecision(precision) << array[pos[0]][pos[1]][pos[2]] << " ";
++count;
if (count%10==0)
file << endl;

View File

@ -52,17 +52,26 @@ void ProcessFieldsTD::DumpCellInterpol(string filename)
{
OpPos[2]=start[2]+pos[2]*subSample[0];
//in x
delta = Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]];
delta = Op->GetMeshDelta(0,OpPos); //Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]];
if (delta)
{
E_T[0][pos[0]][pos[1]][pos[2]] = volt[0][OpPos[0]][OpPos[1]][OpPos[2]] + volt[0][OpPos[0]][OpPos[1]+1][OpPos[2]] + volt[0][OpPos[0]][OpPos[1]][OpPos[2]+1] + volt[0][OpPos[0]][OpPos[1]+1][OpPos[2]+1];
E_T[0][pos[0]][pos[1]][pos[2]] /= (4*delta*Op->gridDelta);
E_T[0][pos[0]][pos[1]][pos[2]] /= (4*delta);//*Op->gridDelta);
}
//in y
delta = Op->discLines[1][OpPos[1]+1] - Op->discLines[1][OpPos[1]];
delta = Op->GetMeshDelta(1,OpPos); //Op->discLines[1][OpPos[1]+1] - Op->discLines[1][OpPos[1]];
if (delta)
{
E_T[1][pos[0]][pos[1]][pos[2]] = volt[1][OpPos[0]][OpPos[1]][OpPos[2]] + volt[1][OpPos[0]+1][OpPos[1]][OpPos[2]] + volt[1][OpPos[0]][OpPos[1]][OpPos[2]+1] + volt[1][OpPos[0]+1][OpPos[1]][OpPos[2]+1];
E_T[1][pos[0]][pos[1]][pos[2]] /= (4*delta*Op->gridDelta);
E_T[1][pos[0]][pos[1]][pos[2]] /= (4*delta);//*Op->gridDelta);
}
//in z
delta = Op->discLines[2][OpPos[2]+1] - Op->discLines[2][OpPos[2]];
delta = Op->GetMeshDelta(2,OpPos); //Op->discLines[2][OpPos[2]+1] - Op->discLines[2][OpPos[2]];
if (delta)
{
E_T[2][pos[0]][pos[1]][pos[2]] = volt[2][OpPos[0]][OpPos[1]][OpPos[2]] + volt[2][OpPos[0]][OpPos[1]+1][OpPos[2]] + volt[2][OpPos[0]+1][OpPos[1]][OpPos[2]] + volt[2][OpPos[0]+1][OpPos[1]+1][OpPos[2]];
E_T[2][pos[0]][pos[1]][pos[2]] /= (4*delta*Op->gridDelta);
E_T[2][pos[0]][pos[1]][pos[2]] /= (4*delta);//*Op->gridDelta);
}
}
}
}
@ -104,18 +113,30 @@ void ProcessFieldsTD::DumpCellInterpol(string filename)
{
OpPos[2]=start[2]+pos[2]*subSample[2];
//in x
if (OpPos[0]==0) delta = Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]];
else delta = 0.5* (Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]-1]);
// if (OpPos[0]==0) delta = Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]];
// else delta = 0.5* (Op->discLines[0][OpPos[0]+1] - Op->discLines[0][OpPos[0]-1]);
delta = Op->GetDiscLine(0,OpPos[0],true);
if (delta)
{
H_T[0][pos[0]][pos[1]][pos[2]] = curr[0][OpPos[0]][OpPos[1]][OpPos[2]] + curr[0][OpPos[0]+1][OpPos[1]][OpPos[2]];
H_T[0][pos[0]][pos[1]][pos[2]] /= (2*delta*Op->gridDelta);
H_T[0][pos[0]][pos[1]][pos[2]] /= (2*delta);//*Op->gridDelta);
}
//in y
delta = Op->discLines[1][OpPos[1]+1] - Op->discLines[1][OpPos[1]];
// delta = Op->discLines[1][OpPos[1]+1] - Op->discLines[1][OpPos[1]];
delta = Op->GetDiscLine(1,OpPos[1],true);
if (delta)
{
H_T[1][pos[0]][pos[1]][pos[2]] = curr[1][OpPos[0]][OpPos[1]][OpPos[2]] + curr[1][OpPos[0]][OpPos[1]+1][OpPos[2]];
H_T[1][pos[0]][pos[1]][pos[2]] /= (2*delta*Op->gridDelta);
H_T[1][pos[0]][pos[1]][pos[2]] /= (2*delta);//*Op->gridDelta);
}
//in z
delta = Op->discLines[2][OpPos[2]+1] - Op->discLines[2][OpPos[2]];
// delta = Op->discLines[2][OpPos[2]+1] - Op->discLines[2][OpPos[2]];
delta = Op->GetDiscLine(2,OpPos[2],true);
if (delta)
{
H_T[2][pos[0]][pos[1]][pos[2]] = curr[2][OpPos[0]][OpPos[1]][OpPos[2]] + curr[2][OpPos[0]][OpPos[1]][OpPos[2]+1];
H_T[2][pos[0]][pos[1]][pos[2]] /= (2*delta*Op->gridDelta);
H_T[2][pos[0]][pos[1]][pos[2]] /= (2*delta);//*Op->gridDelta);
}
}
}
}
@ -154,18 +175,21 @@ void ProcessFieldsTD::DumpNoInterpol(string filename)
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
OpPos[0]=start[0]+pos[0]*subSample[0];
delta[0]=fabs(Op->MainOp->GetIndexDelta(0,OpPos[0]));
delta[0]=Op->GetMeshDelta(0,OpPos);//fabs(Op->MainOp->GetIndexDelta(0,OpPos[0]));
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
OpPos[1]=start[1]+pos[1]*subSample[1];
delta[1]=fabs(Op->MainOp->GetIndexDelta(1,OpPos[1]));
delta[1]=Op->GetMeshDelta(1,OpPos);//fabs(Op->MainOp->GetIndexDelta(1,OpPos[1]));
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
OpPos[2]=start[2]+pos[2]*subSample[2];
delta[2]=fabs(Op->MainOp->GetIndexDelta(2,OpPos[2]));
E_T[0][pos[0]][pos[1]][pos[2]] = volt[0][OpPos[0]][OpPos[1]][OpPos[2]]/delta[0]/Op->gridDelta;
E_T[1][pos[0]][pos[1]][pos[2]] = volt[1][OpPos[0]][OpPos[1]][OpPos[2]]/delta[1]/Op->gridDelta;
E_T[2][pos[0]][pos[1]][pos[2]] = volt[2][OpPos[0]][OpPos[1]][OpPos[2]]/delta[2]/Op->gridDelta;
delta[2]=Op->GetMeshDelta(2,OpPos);//fabs(Op->MainOp->GetIndexDelta(2,OpPos[2]));
if (delta[0])
E_T[0][pos[0]][pos[1]][pos[2]] = volt[0][OpPos[0]][OpPos[1]][OpPos[2]]/delta[0];// /Op->gridDelta;
if (delta[1])
E_T[1][pos[0]][pos[1]][pos[2]] = volt[1][OpPos[0]][OpPos[1]][OpPos[2]]/delta[1];// /Op->gridDelta;
if (delta[2])
E_T[2][pos[0]][pos[1]][pos[2]] = volt[2][OpPos[0]][OpPos[1]][OpPos[2]]/delta[2];// /Op->gridDelta;
}
}
}
@ -196,19 +220,22 @@ void ProcessFieldsTD::DumpNoInterpol(string filename)
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
OpPos[0]=start[0]+pos[0]*subSample[0];
delta[0]=fabs(Op->MainOp->GetIndexWidth(0,OpPos[0]));
delta[0]=Op->GetMeshDelta(0,OpPos,true);//fabs(Op->MainOp->GetIndexWidth(0,OpPos[0]));
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
OpPos[1]=start[1]+pos[1]*subSample[1];
delta[1]=fabs(Op->MainOp->GetIndexWidth(1,OpPos[1]));
delta[1]=Op->GetMeshDelta(1,OpPos,true);//fabs(Op->MainOp->GetIndexWidth(1,OpPos[1]));
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
OpPos[2]=start[2]+pos[2]*subSample[2];
delta[2]=fabs(Op->MainOp->GetIndexWidth(2,OpPos[2]));
delta[2]=Op->GetMeshDelta(2,OpPos,true);//fabs(Op->MainOp->GetIndexWidth(2,OpPos[2]));
//in x
H_T[0][pos[0]][pos[1]][pos[2]] = curr[0][OpPos[0]][OpPos[1]][OpPos[2]]/delta[0]/Op->gridDelta;
H_T[1][pos[0]][pos[1]][pos[2]] = curr[1][OpPos[0]][OpPos[1]][OpPos[2]]/delta[1]/Op->gridDelta;
H_T[2][pos[0]][pos[1]][pos[2]] = curr[2][OpPos[0]][OpPos[1]][OpPos[2]]/delta[2]/Op->gridDelta;
if (delta[0])
H_T[0][pos[0]][pos[1]][pos[2]] = curr[0][OpPos[0]][OpPos[1]][OpPos[2]]/delta[0];// /Op->gridDelta;
if (delta[1])
H_T[1][pos[0]][pos[1]][pos[2]] = curr[1][OpPos[0]][OpPos[1]][OpPos[2]]/delta[1];// /Op->gridDelta;
if (delta[2])
H_T[2][pos[0]][pos[1]][pos[2]] = curr[2][OpPos[0]][OpPos[1]][OpPos[2]]/delta[2];// /Op->gridDelta;
}
}
}

View File

@ -237,6 +237,7 @@ int openEMS::SetupFDTD(const char* file)
if (CylinderCoords)
{
FDTD_Op = Operator_Cylinder::New();
CSX.SetCoordInputType(1); //tell CSX to use cylinder-coords
}
else
{