Merge branch 'master' into sse

Conflicts:
	FDTD/engine.h
	openEMS.pro
	openems.cpp
pull/1/head
Sebastian Held 2010-04-28 22:35:12 +02:00
commit 885fc8ee26
40 changed files with 1203 additions and 181 deletions

View File

@ -16,6 +16,8 @@
*/
#include "engine.h"
#include "engine_extension.h"
#include "operator_extension.h"
#include "tools/array_ops.h"
//! \brief construct an Engine instance
@ -34,10 +36,25 @@ Engine::Engine(const Operator* op)
{
numLines[n] = Op->GetNumberOfLines(n);
}
for (size_t n=0;n<Op->GetNumberOfExtentions();++n)
{
Operator_Extension* op_ext = Op->GetExtension(n);
Engine_Extension* eng_ext = op_ext->CreateEngineExtention();
if (eng_ext)
{
eng_ext->SetEngine(this);
m_Eng_exts.push_back(eng_ext);
}
}
}
Engine::~Engine()
{
for (size_t n=0;n<m_Eng_exts.size();++n)
delete m_Eng_exts.at(n);
m_Eng_exts.clear();
this->Reset();
}
@ -46,6 +63,8 @@ void Engine::Init()
numTS = 0;
volt = Create_N_3DArray(numLines);
curr = Create_N_3DArray(numLines);
file_et1.open( "et1" );
}
void Engine::Reset()
@ -54,6 +73,8 @@ void Engine::Reset()
volt=NULL;
Delete_N_3DArray(curr,numLines);
curr=NULL;
file_et1.close();
}
void Engine::UpdateVoltages()
@ -99,6 +120,13 @@ void Engine::ApplyVoltageExcite()
// if (n==0) cerr << numTS << " => " << Op->ExciteSignal[exc_pos] << endl;
volt[Op->E_Exc_dir[n]][Op->E_Exc_index[0][n]][Op->E_Exc_index[1][n]][Op->E_Exc_index[2][n]] += Op->E_Exc_amp[n]*Op->ExciteSignal[exc_pos];
}
// write the first excitation into the file "et1"
if (Op->E_Exc_Count >= 1) {
exc_pos = (int)numTS - (int)Op->E_Exc_delay[0];
exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->ExciteLength);
file_et1 << numTS * Op->GetTimestep() << "\t" << Op->E_Exc_amp[0]*Op->ExciteSignal[exc_pos] << "\n"; // do not use std::endl here, because it will do an implicit flush
}
}
void Engine::UpdateCurrents()
@ -135,10 +163,32 @@ bool Engine::IterateTS(unsigned int iterTS)
{
for (unsigned int iter=0;iter<iterTS;++iter)
{
//voltage updates with extensions
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->DoPreVoltageUpdates();
UpdateVoltages();
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->DoPostVoltageUpdates();
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->Apply2Voltages();
ApplyVoltageExcite();
//current updates with extensions
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->DoPreCurrentUpdates();
UpdateCurrents();
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->DoPostCurrentUpdates();
for (size_t n=0;n<m_Eng_exts.size();++n)
m_Eng_exts.at(n)->Apply2Current();
ApplyCurrentExcite();
++numTS;
}
return true;

View File

@ -18,8 +18,11 @@
#ifndef ENGINE_H
#define ENGINE_H
#include <fstream>
#include "operator.h"
class Engine_Extension;
class Engine
{
public:
@ -37,6 +40,9 @@ public:
inline virtual FDTD_FLOAT GetVolt( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return volt[n][x][y][z]; }
inline virtual FDTD_FLOAT GetCurr( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return curr[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetVolt( unsigned int n, unsigned int pos[] ) { return volt[n][pos[0]][pos[1]][pos[2]]; }
inline virtual FDTD_FLOAT& GetCurr( unsigned int n, unsigned int pos[] ) { return curr[n][pos[0]][pos[1]][pos[2]]; }
protected:
Engine(const Operator* op);
const Operator* Op;
@ -51,6 +57,10 @@ protected:
FDTD_FLOAT**** volt;
FDTD_FLOAT**** curr;
unsigned int numTS;
vector<Engine_Extension*> m_Eng_exts;
ofstream file_et1;
};
#endif // ENGINE_H

105
FDTD/engine_ext_mur_abc.cpp Normal file
View File

@ -0,0 +1,105 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine_ext_mur_abc.h"
#include "operator_ext_mur_abc.h"
#include "engine.h"
#include "tools/array_ops.h"
Engine_Ext_Mur_ABC::Engine_Ext_Mur_ABC(Operator_Ext_Mur_ABC* op_ext) : Engine_Extension(op_ext)
{
m_Op_mur = op_ext;
m_numLines[0] = m_Op_mur->m_numLines[0];
m_numLines[1] = m_Op_mur->m_numLines[1];
m_ny = m_Op_mur->m_ny;
m_nyP = m_Op_mur->m_nyP;
m_nyPP = m_Op_mur->m_nyPP;
m_LineNr = m_Op_mur->m_LineNr;
m_LineNr_Shift = m_Op_mur->m_LineNr_Shift;
m_Mur_Coeff = m_Op_mur->m_Mur_Coeff;
m_volt_nyP = Create2DArray(m_numLines);
m_volt_nyPP = Create2DArray(m_numLines);
}
Engine_Ext_Mur_ABC::~Engine_Ext_Mur_ABC()
{
Delete2DArray(m_volt_nyP,m_numLines);
m_volt_nyP = NULL;
Delete2DArray(m_volt_nyPP,m_numLines);
m_volt_nyPP = NULL;
}
void Engine_Ext_Mur_ABC::DoPreVoltageUpdates()
{
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
unsigned int pos_shift[] = {0,0,0};
pos[m_ny] = m_LineNr;
pos_shift[m_ny] = m_LineNr_Shift;
for (pos[m_nyP]=0;pos[m_nyP]<m_numLines[0];++pos[m_nyP])
{
pos_shift[m_nyP] = pos[m_nyP];
for (pos[m_nyPP]=0;pos[m_nyPP]<m_numLines[1];++pos[m_nyPP])
{
pos_shift[m_nyPP] = pos[m_nyPP];
m_volt_nyP[pos[m_nyP]][pos[m_nyPP]] = m_Eng->GetVolt(m_nyP,pos_shift) - m_Mur_Coeff * m_Eng->GetVolt(m_nyP,pos);
m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]] = m_Eng->GetVolt(m_nyPP,pos_shift) - m_Mur_Coeff * m_Eng->GetVolt(m_nyPP,pos);
}
}
}
void Engine_Ext_Mur_ABC::DoPostVoltageUpdates()
{
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
unsigned int pos_shift[] = {0,0,0};
pos[m_ny] = m_LineNr;
pos_shift[m_ny] = m_LineNr_Shift;
for (pos[m_nyP]=0;pos[m_nyP]<m_numLines[0];++pos[m_nyP])
{
pos_shift[m_nyP] = pos[m_nyP];
for (pos[m_nyPP]=0;pos[m_nyPP]<m_numLines[1];++pos[m_nyPP])
{
pos_shift[m_nyPP] = pos[m_nyPP];
m_volt_nyP[pos[m_nyP]][pos[m_nyPP]] += m_Mur_Coeff * m_Eng->GetVolt(m_nyP,pos_shift);
m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]] += m_Mur_Coeff * m_Eng->GetVolt(m_nyPP,pos_shift);
}
}
}
void Engine_Ext_Mur_ABC::Apply2Voltages()
{
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
pos[m_ny] = m_LineNr;
for (pos[m_nyP]=0;pos[m_nyP]<m_numLines[0];++pos[m_nyP])
{
for (pos[m_nyPP]=0;pos[m_nyPP]<m_numLines[1];++pos[m_nyPP])
{
m_Eng->GetVolt(m_nyP,pos) = m_volt_nyP[pos[m_nyP]][pos[m_nyPP]];
m_Eng->GetVolt(m_nyPP,pos) = m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]];
}
}
}

50
FDTD/engine_ext_mur_abc.h Normal file
View File

@ -0,0 +1,50 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ENGINE_EXT_MUR_ABC_H
#define ENGINE_EXT_MUR_ABC_H
#include "engine_extension.h"
#include "operator.h"
class Operator_Ext_Mur_ABC;
class Engine_Ext_Mur_ABC : public Engine_Extension
{
public:
Engine_Ext_Mur_ABC(Operator_Ext_Mur_ABC* op_ext);
virtual ~Engine_Ext_Mur_ABC();
virtual void DoPreVoltageUpdates();
virtual void DoPostVoltageUpdates();
virtual void Apply2Voltages();
protected:
Operator_Ext_Mur_ABC* m_Op_mur;
int m_ny;
int m_nyP,m_nyPP;
unsigned int m_LineNr;
int m_LineNr_Shift;
unsigned int m_numLines[2];
FDTD_FLOAT m_Mur_Coeff;
FDTD_FLOAT** m_volt_nyP; //n+1 direction
FDTD_FLOAT** m_volt_nyPP; //n+2 direction
};
#endif // ENGINE_EXT_MUR_ABC_H

26
FDTD/engine_extension.cpp Normal file
View File

@ -0,0 +1,26 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine_extension.h"
#include "engine.h"
Engine_Extension::Engine_Extension(Operator_Extension* op_ext)
{
m_Op_ext = op_ext;
m_Eng = NULL;
}

51
FDTD/engine_extension.h Normal file
View File

@ -0,0 +1,51 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ENGINE_EXTENSION_H
#define ENGINE_EXTENSION_H
class Operator_Extension;
class Engine;
//! Abstract base-class for all engine extensions
class Engine_Extension
{
public:
//! This methode will be called __before__ the main engine does the usual voltage updates. This methode may __not__ change the engine voltages!!!
virtual void DoPreVoltageUpdates() {}
//! This methode will be called __after__ the main engine does the usual voltage updates. This methode may __not__ change the engine voltages!!!
virtual void DoPostVoltageUpdates() {}
//! This methode will be called __after__ all updates to the voltages and extensions and may add/set its results to the engine voltages, but may __not__ rely on the current value of the engine voltages!!!
virtual void Apply2Voltages() {}
//! This methode will be called __before__ the main engine does the usual current updates. This methode may __not__ change the engine current!!!
virtual void DoPreCurrentUpdates() {}
//! This methode will be called __after__ the main engine does the usual current updates. This methode may __not__ change the engine current!!!
virtual void DoPostCurrentUpdates() {}
//! This methode will be called __after__ all updates to the current and extensions and may add/set its results to the engine current, but may __not__ rely on the current value of the engine current!!!
virtual void Apply2Current() {}
//! Set the Engine to this extention. This will usually done automatically by Engine::AddExtension
virtual void SetEngine(Engine* eng) {m_Eng=eng;}
protected:
Engine_Extension(Operator_Extension* op_ext);
Operator_Extension* m_Op_ext;
Engine* m_Eng;
};
#endif // ENGINE_EXTENSION_H

View File

@ -275,24 +275,13 @@ void thread_e_excitation::operator()()
//std::cout << "thread_e_excitation::operator()" << std::endl;
//DBG().cout() << "Thread e_excitation (" << boost::this_thread::get_id() << ") started." << endl;
int exc_pos;
const unsigned int E_Exc_Count = m_enginePtr->Op->E_Exc_Count;
while (!m_enginePtr->m_stopThreads)
{
// waiting on NS_Engine_Multithread::thread
m_enginePtr->m_barrier1->wait();
m_enginePtr->m_barrier1->wait(); // waiting on NS_Engine_Multithread::thread
// soft voltage excitation here (E-field excite)
for (unsigned int n=0;n<E_Exc_Count;++n)
{
exc_pos = (int)m_enginePtr->numTS - (int)m_enginePtr->Op->E_Exc_delay[n];
exc_pos*= (exc_pos>0 && exc_pos<=(int)m_enginePtr->Op->ExciteLength);
m_enginePtr->volt[m_enginePtr->Op->E_Exc_dir[n]][m_enginePtr->Op->E_Exc_index[0][n]][m_enginePtr->Op->E_Exc_index[1][n]][m_enginePtr->Op->E_Exc_index[2][n]] += m_enginePtr->Op->E_Exc_amp[n]*m_enginePtr->Op->ExciteSignal[exc_pos];
}
m_enginePtr->ApplyVoltageExcite();
// continue NS_Engine_Multithread::thread
m_enginePtr->m_barrier2->wait();
m_enginePtr->m_barrier2->wait(); // continue NS_Engine_Multithread::thread
}
//DBG().cout() << "Thread e_excitation (" << boost::this_thread::get_id() << ") finished." << endl;

View File

@ -26,6 +26,12 @@
#include <boost/fusion/container/list/list_fwd.hpp>
#include <boost/fusion/include/list_fwd.hpp>
#ifdef WIN32
#include <Winsock2.h> // for struct timeval
#endif
#include <sys/time.h>
class Engine_Multithread;
namespace NS_Engine_Multithread {

View File

@ -17,6 +17,7 @@
#include <fstream>
#include "operator.h"
#include "operator_extension.h"
#include "processfields.h"
#include "tools/array_ops.h"
#include "fparser.hh"
@ -34,6 +35,9 @@ Operator::Operator()
Operator::~Operator()
{
for (size_t n=0;n<m_Op_exts.size();++n)
delete m_Op_exts.at(n);
m_Op_exts.clear();
Reset();
}
@ -102,6 +106,14 @@ unsigned int Operator::CalcNyquistNum(double fmax)
return floor(T0/2/dT);
}
string Operator::GetDirName(int ny) const
{
if (ny==0) return "x";
if (ny==1) return "y";
if (ny==2) return "z";
return "";
}
double Operator::GetMeshDelta(int n, const unsigned int* pos, bool dualMesh) const
{
if ((n<0) || (n>2)) return 0.0;
@ -545,6 +557,10 @@ int Operator::CalcECOperator()
}
}
//all information available for extension... create now...
for (size_t n=0;n<m_Op_exts.size();++n)
m_Op_exts.at(n)->BuildExtension();
//cleanup
for (int n=0;n<3;++n)
{
@ -1083,3 +1099,7 @@ bool Operator::CalcPEC()
return true;
}
void Operator::AddExtension(Operator_Extension* op_ext)
{
m_Op_exts.push_back(op_ext);
}

View File

@ -24,6 +24,8 @@
#define FDTD_FLOAT float
class Operator_Extension;
//! Abstract base-class for the FDTD-operator
class Operator
{
@ -67,6 +69,9 @@ public:
void DumpOperator2File(string filename);
void DumpMaterial2File(string filename);
//! Get the name for the given direction: 0 -> x, 1 -> y, 2 -> z
virtual string GetDirName(int ny) const;
virtual double GetGridDelta() const {return gridDelta;}
//! Get the mesh delta times the grid delta for a 3D position
virtual double GetMeshDelta(int n, const int* pos, bool dualMesh=false) const;
@ -77,6 +82,10 @@ public:
virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const;
virtual bool SnapToMesh(double* coord, unsigned int* uicoord, bool lower=false, bool* inside=NULL);
virtual void AddExtension(Operator_Extension* op_ext);
virtual size_t GetNumberOfExtentions() const {return m_Op_exts.size();}
virtual Operator_Extension* GetExtension(size_t index) const {return m_Op_exts.at(index);}
protected:
//! use New() for creating a new Operator
Operator();
@ -123,6 +132,8 @@ protected:
AdrOp* MainOp;
AdrOp* DualOp;
vector<Operator_Extension*> m_Op_exts;
// engine/post-proc needs access
public:
//EC operator

View File

@ -68,13 +68,21 @@ inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
return numLines[ny];
}
double Operator_Cylinder::GetMeshDelta(int n, int* pos, bool dualMesh) const
string Operator_Cylinder::GetDirName(int ny) const
{
if (ny==0) return "rho";
if (ny==1) return "alpha";
if (ny==2) return "z";
return "";
}
double Operator_Cylinder::GetMeshDelta(int n, const int* pos, bool dualMesh) const
{
double delta = Operator::GetMeshDelta(n,pos,dualMesh);
if (delta==0) return delta;
if (n==1)
{
return delta * GetDiscLine(n,pos[0],dualMesh);
return delta * GetDiscLine(0,pos[0],dualMesh);
}
return delta;
}
@ -104,7 +112,10 @@ bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
}
else if (minmaxA>2*PI)
{cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;}
else CC_closedAlpha=false;
else
{
CC_closedAlpha=false;
}
if (discLines[0][0]<0)
{cerr << "Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!!" << endl; Reset(); return false;}
@ -123,7 +134,9 @@ int Operator_Cylinder::CalcECOperator()
if (val)
return val;
if (CC_R0_included==false)
//if r=0 is not included -> obviously no special treatment for r=0
//if alpha direction is not closed, PEC-BC at r=0 necessary and already set...
if ((CC_R0_included==false) || (CC_closedAlpha==false))
return val;
unsigned int pos[3];
@ -133,16 +146,13 @@ int Operator_Cylinder::CalcECOperator()
{
double C=0;
double G=0;
for (pos[1]=0;pos[1]<numLines[1]-CC_closedAlpha;++pos[1])
for (pos[1]=0;pos[1]<numLines[1]-1;++pos[1])
{
Calc_ECPos(2,pos,inEC);
// if (pos[2]==0)
// cerr << inEC[0] << endl;
C+=inEC[0]*0.5;
G+=inEC[1]*0.5;
}
if (pos[2]==0)
cerr << C << " and " << G << endl;
vv[2][0][0][pos[2]] = 1;
vv_R0[pos[2]] = (1-dT*G/2/C)/(1+dT*G/2/C);
vi_R0[pos[2]] = (dT/C)/(1+dT*G/2/C);
}
@ -173,12 +183,6 @@ inline void Operator_Cylinder::Calc_ECOperatorPos(int n, unsigned int* pos)
ii[n][pos[0]][pos[1]][pos[2]] = 0;
iv[n][pos[0]][pos[1]][pos[2]] = 0;
}
if (CC_R0_included && (n==2) && (pos[0]==0))
{
vv[n][pos[0]][pos[1]][pos[2]] = 1;
vi[n][pos[0]][pos[1]][pos[2]] = 0;
}
}
void Operator_Cylinder::ApplyElectricBC(bool* dirs)
@ -190,9 +194,9 @@ void Operator_Cylinder::ApplyElectricBC(bool* dirs)
}
if (CC_R0_included)
{
dirs[2]=0; //no PEC in r_min directions...
// no special treatment necessary
// operator for z-direction at r=0 will be calculated and set separately
}
Operator::ApplyElectricBC(dirs);
}
@ -205,7 +209,7 @@ void Operator_Cylinder::ApplyMagneticBC(bool* dirs)
}
if (CC_R0_included)
{
dirs[2]=0; //no PMC in r_min directions...
dirs[0]=0; //no PMC in r_min directions...
}
Operator::ApplyMagneticBC(dirs);
}
@ -348,7 +352,7 @@ bool Operator_Cylinder::Calc_ECPos(int n, unsigned int* pos, double* inEC)
inEC[1] += 0;
}
if (CC_R0_included && (n==1) && (coord[0]==0))
if (CC_R0_included && (n==1) && (pos[0]==0))
{
inEC[0]=0;
inEC[1]=0;

View File

@ -35,8 +35,11 @@ public:
virtual unsigned int GetNumberOfLines(int ny) const;
//! Get the name for the given direction: 0 -> rho, 1 -> alpha, 2 -> z
virtual string GetDirName(int ny) const;
//! Get the mesh delta times the grid delta for a 3D position, including radius corrected alpha-mesh width
virtual double GetMeshDelta(int n, int* pos, bool dualMesh=false) const;
virtual double GetMeshDelta(int n, const int* pos, bool dualMesh=false) const;
bool GetClosedAlpha() const {return CC_closedAlpha;}
bool GetR0Included() const {return CC_R0_included;}

View File

@ -0,0 +1,80 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "operator_ext_mur_abc.h"
#include "engine_ext_mur_abc.h"
#include "tools/array_ops.h"
Operator_Ext_Mur_ABC::Operator_Ext_Mur_ABC(Operator* op) : Operator_Extension(op)
{
m_Mur_Coeff = NULL;
m_ny = -1;
m_nyP = -1;
m_nyPP = -1;
m_LineNr = 0;
m_LineNr_Shift = 0;
m_Mur_Coeff = 0;
}
Operator_Ext_Mur_ABC::~Operator_Ext_Mur_ABC()
{
}
void Operator_Ext_Mur_ABC::SetDirection(int ny, bool top_ny)
{
if ((ny<0) || (ny>2))
return;
m_ny = ny;
m_nyP = (ny+1)%3;
m_nyPP = (ny+2)%3;
if (!top_ny)
{
m_LineNr = 0;
m_LineNr_Shift = 1;
}
else
{
m_LineNr = m_Op->GetNumberOfLines(m_ny)-1;
m_LineNr_Shift = m_Op->GetNumberOfLines(m_ny) - 2;
}
m_numLines[0] = m_Op->GetNumberOfLines(m_nyP);
m_numLines[1] = m_Op->GetNumberOfLines(m_nyPP);
}
bool Operator_Ext_Mur_ABC::BuildExtension()
{
if (m_ny<0)
{
cerr << "Operator_Ext_Mur_ABC::BuildExtension: Warning, Extension not initialized! Use SetDirection!! Abort build!!" << endl;
return false;
}
double dT = m_Op->GetTimestep();
unsigned int pos[] = {0,0,0};
pos[m_ny] = m_LineNr;
double delta = fabs(m_Op->GetMeshDelta(m_ny,pos));
m_Mur_Coeff = (__C0__ * dT - delta) / (__C0__ * dT + delta);
// cerr << "Operator_Ext_Mur_ABC::BuildExtension(): " << m_Mur_Coeff << endl;
return true;
}
Engine_Extension* Operator_Ext_Mur_ABC::CreateEngineExtention()
{
Engine_Ext_Mur_ABC* eng_ext = new Engine_Ext_Mur_ABC(this);
return eng_ext;
}

View File

@ -0,0 +1,49 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPERATOR_EXT_MUR_ABC_H
#define OPERATOR_EXT_MUR_ABC_H
#include "operator.h"
#include "operator_extension.h"
class Operator_Ext_Mur_ABC : public Operator_Extension
{
friend class Engine_Ext_Mur_ABC;
public:
Operator_Ext_Mur_ABC(Operator* op);
~Operator_Ext_Mur_ABC();
//! Define the direction of this ABC: ny=0,1,2 -> x,y,z and if at bottom_ny -> e.g. x=0 or x=end
void SetDirection(int ny, bool top_ny);
virtual bool BuildExtension();
virtual Engine_Extension* CreateEngineExtention();
protected:
int m_ny;
int m_nyP,m_nyPP;
unsigned int m_LineNr;
int m_LineNr_Shift;
unsigned int m_numLines[2];
FDTD_FLOAT m_Mur_Coeff;
};
#endif // OPERATOR_EXT_MUR_ABC_H

View File

@ -0,0 +1,25 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "operator_extension.h"
#include "operator.h"
Operator_Extension::Operator_Extension(Operator* op)
{
m_Op = op;
}

37
FDTD/operator_extension.h Normal file
View File

@ -0,0 +1,37 @@
/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPERATOR_EXTENSION_H
#define OPERATOR_EXTENSION_H
class Operator;
class Engine_Extension;
//! Abstract base-class for all operator extensions
class Operator_Extension
{
public:
virtual bool BuildExtension() {return true;}
virtual Engine_Extension* CreateEngineExtention() {return 0;}
protected:
Operator_Extension(Operator* op);
Operator* m_Op;
};
#endif // OPERATOR_EXTENSION_H

View File

@ -18,7 +18,7 @@
#include "processfields.h"
#include <iomanip>
#include "H5Cpp.h"
#include <H5Cpp.h>
ProcessFields::ProcessFields(Operator* op, Engine* eng) : Processing(op, eng)
{
@ -51,7 +51,8 @@ ProcessFields::~ProcessFields()
void ProcessFields::InitProcess()
{
if (Enabled==false) return;
string names[] = {"x","y","z"};
//get the correct direction names for all coordinate systems
string names[] = {Op->GetDirName(0),Op->GetDirName(1),Op->GetDirName(2)};
if (m_fileType==HDF5_FILETYPE)
{
unsigned int* NrLines;

View File

@ -19,7 +19,7 @@
#define PROCESSFIELDS_H
#include "processing.h"
#include "../tools/array_ops.h"
#include "tools/array_ops.h"
class ProcessFields : public Processing
{

View File

@ -1,4 +1,17 @@
function PlotHDF5FieldData(file, PlotArgs)
% function PlotHDF5FieldData(file, PlotArgs)
%
% e.g.
% PlotArgs.slice = {0 [10 20] 0};
% PlotArgs.pauseTime=0.01;
% PlotArgs.component=2;
% PlotArgs.Limit = 'auto';
%
% PlotHDF5FieldData('tmp/Et.h5',PlotArgs)
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
component = PlotArgs.component;
@ -11,7 +24,11 @@ end
mesh = ReadHDF5Mesh(file);
fields = ReadHDF5FieldData(file);
[X Y Z] = meshgrid(double(mesh.lines{1}),double(mesh.lines{2}),double(mesh.lines{3}));
if (mesh.type==0)
[X Y Z] = meshgrid(double(mesh.lines{1}),double(mesh.lines{2}),double(mesh.lines{3}));
else
disp(['PlotHDF5FieldData:: Error: unknown mesh type ' num2str(mesh.type)]);
end
max_amp = 0;
@ -46,14 +63,18 @@ for n=1:numel(Field)
title(fields.names{n});
%view(3)
axis equal
% if (isfield(PlotArgs,'zlim'))
% if ~ischar(PlotArgs.zlim)
% zlim(PlotArgs.zlim);
% elseif strcmp(PlotArgs.zlim,'auto')
% zlim([-max_amp*(component>0) max_amp]);
% end
% end
%
if (isfield(PlotArgs,'Limit'))
if ~ischar(PlotArgs.Limit)
caxis(PlotArgs.Limit);
elseif strcmp(PlotArgs.Limit,'auto')
if (component>0)
caxis([-max_amp,max_amp]);
else
caxis([0,max_amp]);
end
end
end
drawnow
pause(pauseT)
end

View File

@ -1,4 +1,13 @@
function hdf_fielddata = ReadHDF5FieldData(file)
% function hdf_fielddata = ReadHDF5FieldData(file)
%
% returns:
% hdf_fielddata.names
% hdf_fielddata.values
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
info = hdf5info(file);

View File

@ -1,4 +1,14 @@
function hdf_mesh = ReadHDF5Mesh(file)
% function hdf_mesh = ReadHDF5Mesh(file)
%
% returns:
% hdf_mesh.type
% hdf_mesh.names
% hdf_mesh.lines
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
info = hdf5info(file);
@ -14,3 +24,9 @@ hdf_mesh.names = names;
for n=1:numel(names)
hdf_mesh.lines{n} = hdf5read(file,names{n});
end
if (strcmp(names{1},'/mesh/rho'))
hdf_mesh.type=1;
else
hdf_mesh.type=0;
end

View File

@ -1,4 +1,16 @@
function UI = ReadUI(files, path)
% function UI = ReadUI(files, path)
%
% read current and voltages from multiple files found in path
%
% returns voltages/currents in time and frequency-domain
%
% e.g.
% UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
if (nargin<2)
path ='';

View File

@ -3,6 +3,10 @@ function FDTD = SetBoundaryCond(FDTD,BC)
%
% BC = [xmin xmax ymin ymax zmin zmax];
% ?min/?max: 0=PEC 1=PMC
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
FDTD.BoundaryCond.ATTRIBUTE.xmin=BC(1);
FDTD.BoundaryCond.ATTRIBUTE.xmax=BC(2);

View File

@ -1,4 +1,19 @@
function FDTD = SetCustomExcite(FDTD,f0,funcStr);
function FDTD = SetCustomExcite(FDTD,f0,funcStr)
% function FDTD = SetCustomExcite(FDTD,f0,funcStr)
%
% f0 : nyquist rate
% funcStr : string desribing the excitation function e(t)
%
% see also SetSinusExcite SetGaussExcite
%
% e.g for a ramped sinus excite...
% T = 1/f0;
% FDTD = SetCustomExcite(FDTD,1e9,..
% [ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]);
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
FDTD.Excitation.ATTRIBUTE.Type=10;
FDTD.Excitation.ATTRIBUTE.f0=f0;

View File

@ -1,4 +1,16 @@
function FDTD = SetGaussExcite(FDTD,f0,fc);
function FDTD = SetGaussExcite(FDTD,f0,fc)
% function FDTD = SetSinusExcite(FDTD,f0,fc);
%
% f0 : center frequency
% fc : 3dB cutoff frequency --> bandwidth is 2*fc
%
% see also SetSinusExcite SetCustomExcite
%
% e.g FDTD = SetGaussExcite(FDTD,1e9,1e8);
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
FDTD.Excitation.ATTRIBUTE.Type=0;
FDTD.Excitation.ATTRIBUTE.f0=f0;

View File

@ -1,4 +1,13 @@
function FDTD = SetGaussExcite(FDTD,f0);
function FDTD = SetSinusExcite(FDTD,f0)
% function FDTD = SetSinusExcite(FDTD,f0)
%
% see also SetGaussExcite SetCustomExcite
%
% e.g FDTD = SetSinusExcite(FDTD,1e9);
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
FDTD.Excitation.ATTRIBUTE.Type=1;
FDTD.Excitation.ATTRIBUTE.f0=f0;

View File

@ -1,4 +1,9 @@
function WriteOpenEMS(filename, FDTD, CSX)
% function WriteOpenEMS(filename, FDTD, CSX)
%
% openEMS matlab interface
% -----------------------
% author: Thorsten Liebig
openEMS.FDTD = FDTD;
openEMS.ContinuousStructure = CSX;

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 500;
length = 5000;
unit = 1e-3;
@ -27,6 +28,7 @@ func_Ea = [ num2str(1/kc) '*sin(a)*0.5*(j0(' num2str(kc) '*rho)-jn(2,' num2str
func_Ex = [func_Er '*cos(a) - ' func_Ea '*sin(a)'];
func_Ey = [func_Er '*sin(a) + ' func_Ea '*cos(a)'];
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
@ -39,14 +41,14 @@ Sim_CSX = 'Circ_WG.xml';
mkdir(Sim_Path);
%setup FDTD parameter
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(1000,1e-6,'OverSampling',5);
T = 1/f0;
FDTD = SetCustomExcite(FDTD,f0,[ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]);
BC = [1 1 1 1 1 1] * 0;
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -mesh_res(1)/2-rad:mesh_res(1):rad+mesh_res(1)/2;
mesh.y = -mesh_res(2)/2-rad:mesh_res(2):rad+mesh_res(2)/2;
@ -56,7 +58,7 @@ CSX = DefineRectGrid(CSX, 1e-3,mesh);
start = [0,0,0];
stop = [0,0,length];
%%fake pml
%%% fake pml
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -83,7 +85,7 @@ weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddCylinder(CSX,'excite', 5 ,[0 0 -0.1],[0 0 0.1],rad);
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','SubSampling','2,2,4','FileType',1,'DumpMode',2);
start = [mesh.x(1) , mesh.y(1) , mesh.z(1)];
stop = [mesh.x(end) , mesh.y(end) , mesh.z(end)];
@ -102,21 +104,22 @@ CSX = AddBox(CSX,'Et',0 , start,stop);
% stop = [mesh.x(end) , mesh.y(end) , length/2];
% CSX = AddBox(CSX,'Exy',0 , start,stop);
%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
start = [ -rad 0 0/2 ];stop = [ rad 0 0/2 ];
CSX = AddBox(CSX,'ut1', 0 ,start,stop);
%
% %current calc
% CSX = AddProbe(CSX,'it1',1);
% mid = 0.5*(coax_rad_i+coax_rad_ai);
% start = [ -mid -mid length/2 ];stop = [ mid mid length/2 ];
% CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatoble xml-file
%current calc
CSX = AddProbe(CSX,'it1',1);
mid = 0.5*(coax_rad_i+coax_rad_ai);
start = [ -mid -mid length/2 ];stop = [ mid mid length/2 ];
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -124,6 +127,7 @@ disp(command);
system(command)
cd(savePath);
%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
UI = ReadUI('ut1','tmp/');
plot(UI.TD{1}.t,UI.TD{1}.val);
grid on;

View File

@ -2,14 +2,16 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 500;
length = 5000;
length = 10000;
unit = 1e-3;
rad = 300;
mesh_max = 15;
N_alpha = ceil(rad * 2*pi / mesh_max);
N_alpha = ceil(rad * pi / mesh_max) * 2;
mesh_res = [mesh_max 2*pi/N_alpha mesh_max];
do_Half_Waveguide = 1;
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
@ -24,9 +26,10 @@ fc = C0*kc/2/pi
beta = sqrt(k^2 - kc^2);
kc = kc*unit;
func_Er = [ num2str(-1/kc^2) '/rho*cos(a)*j1(' num2str(kc) '*rho)'];
func_Ea = [ num2str(1/kc) '*sin(a)*0.5*(j0(' num2str(kc) '*rho)-jn(2,' num2str(kc) '*rho))'];
func_Er = [ num2str(-1/kc^2,15) '/rho*cos(a)*j1(' num2str(kc,15) '*rho)'];
func_Ea = [ num2str(1/kc,15) '*sin(a)*0.5*(j0(' num2str(kc,15) '*rho)-jn(2,' num2str(kc,15) '*rho))'];
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
@ -34,29 +37,38 @@ openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --debug-operator'];
% openEMS_opts = [openEMS_opts ' --engine=multithreaded'];
Sim_Path = 'tmp';
if (do_Half_Waveguide)
Sim_Path = 'tmp_half_CWG_CC';
else
Sim_Path = 'tmp_full_CWG_CC';
end
Sim_CSX = 'Circ_WG_CC.xml';
mkdir(Sim_Path);
%setup FDTD parameter
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10);
T = 1/f0;
FDTD = SetCustomExcite(FDTD,f0,[ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]);
% T = 1/f0;
% FDTD = SetCustomExcite(FDTD,f0,[ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]);
FDTD = SetSinusExcite(FDTD,f0);
BC = [0 0 0 0 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = [0 2*mesh_res(1):mesh_res(1):rad];
mesh.y = linspace(-pi,pi,N_alpha);
mesh.x = 0:mesh_res(1):rad;
if (do_Half_Waveguide)
mesh.y = linspace(-pi/2,pi/2,N_alpha/2);
else
mesh.y = linspace(-pi,pi,N_alpha)+pi/2;
end
y_delta = mesh.y(2) - mesh.y(1);
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
start = [0 mesh.y(1) length-abs_length];
stop = [rad mesh.y(end) length];
%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start = [0 mesh.y(1)-y_delta length-abs_length];
stop = [rad*1.2 mesh.y(end)+y_delta length];
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -66,27 +78,31 @@ CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_leng
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
CSX = AddBox(CSX,'pml',0 ,start,stop);
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = func_Er;
weight{2} = func_Ea;
weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
start(3)=-5;
stop(3)=5;
start(3)=-.5;
stop(3)=0.5;
CSX = AddBox(CSX,'excite', 5 ,start,stop);
%dump
CSX = AddDump(CSX,'Et','FileType',0,'DumpMode',0);
start = [mesh.x(1) ,0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'DumpMode',0,'SubSampling','1,1,5');
start = [mesh.x(1) , mesh.y(1)-y_delta , 0];
stop = [mesh.x(end) , mesh.y(end)+y_delta , length];
CSX = AddBox(CSX,'Et',0 , start,stop);
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',0,'DumpMode',0);
start = [mesh.x(1) ,0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
CSX = AddDump(CSX,'Ht','FileType',1,'DumpType',1,'DumpMode',0,'SubSampling','1,1,5');
CSX = AddBox(CSX,'Ht',0 , start,stop);
%voltage calc
CSX = AddDump(CSX,'Et_rz_','FileType',0,'DumpMode',2,'SubSampling','1,1,5');
start = [mesh.x(1) , 0 , 0];
stop = [mesh.x(end) , 0 , length];
CSX = AddBox(CSX,'Et_rz_',0 , start,stop);
%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddProbe(CSX,'ut_exc',0);
start = [ 0 0 0 ];stop = [ rad 0 0 ];
CSX = AddBox(CSX,'ut_exc', 0 ,start,stop);
@ -95,10 +111,10 @@ CSX = AddProbe(CSX,'ut_1',0);
start = [ 0 0 length/2 ];stop = [ rad 0 length/2 ];
CSX = AddBox(CSX,'ut_1', 0 ,start,stop);
%Write openEMS compatoble xml-file
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -106,16 +122,35 @@ disp(command);
system(command)
cd(savePath);
UI = ReadUI('ut_1','tmp/');
%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
UI = ReadUI('ut_1',[Sim_Path '/']);
plot(UI.TD{1}.t,UI.TD{1}.val);
grid on;
% plotting
% if exist('tmp/Et.h5','file')
% PlotArgs.slice = {mesh.x(round(end/2)) mesh.y(round(end/2)) mesh.z(round(end/2))};
% PlotArgs.pauseTime=0.1;
% PlotArgs.component=0;
% PlotArgs.zlim='auto';
%
% PlotHDF5FieldData('tmp/Et.h5',PlotArgs)
% end
file = [Sim_Path '/Et.h5'];
z_planes = 1;
timestep = 10;
for z =z_planes
figure
if exist(file,'file')
mesh = ReadHDF5Mesh(file);
fields = ReadHDF5FieldData(file);
[ALPHA RHO] = meshgrid(double(mesh.lines{1}),double(mesh.lines{2}));
X = RHO.*cos(ALPHA);
Y = RHO.*sin(ALPHA);
Er = double( fields.values{timestep}(:,:,z,1) );
Ea = double( fields.values{timestep}(:,:,z,2) );
Ez = double( fields.values{timestep}(:,:,z,3) );
Ex = Er.*cos(ALPHA) - Ea.*sin(ALPHA);
Ey = Er.*sin(ALPHA) + Ea.*cos(ALPHA);
quiver(X,Y,Ex,Ey)
axis equal
title(['z : ' num2str(mesh.lines{2}(z)) ' ts: ' int2str(n)] );
Ex(10,5)
pause(1)
end
end

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 250;
length = 1000;
coax_rad_i = 100;
@ -11,10 +12,16 @@ mesh_res = [5 5 5];
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
C0 = 1/sqrt(EPS0*MUE0);
Z0 = sqrt(MUE0/EPS0);
f0 = 0.5e9;
epsR = 1;
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
Sim_Path = 'tmp';
@ -22,24 +29,20 @@ Sim_CSX = 'coax.xml';
mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD(5e5,1e-6);
FDTD = SetGaussExcite(FDTD,0.5e9,0.5e9);
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(5e5,1e-5);
FDTD = SetGaussExcite(FDTD,f0,f0);
BC = [1 1 1 1 1 1] * 0;
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -2.5*mesh_res(1)-coax_rad_aa : mesh_res(1) : coax_rad_aa+2.5*mesh_res(1);
mesh.y = mesh.x;
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%create copper helix and feed lines...
CSX = AddMaterial(CSX,'copper');
CSX = SetMaterialProperty(CSX,'copper','Kappa',56e6);
%%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -49,11 +52,15 @@ CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_leng
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
%%% coax
CSX = AddMaterial(CSX,'copper');
CSX = SetMaterialProperty(CSX,'copper','Kappa',56e6);
start = [0, 0 , 0];stop = [0, 0 , length];
CSX = AddCylinder(CSX,'copper',0 ,start,stop,coax_rad_i);
CSX = AddCylindricalShell(CSX,'copper',0 ,start,stop,0.5*(coax_rad_aa+coax_rad_ai),(coax_rad_aa-coax_rad_ai));
start(3) = length-abs_length;
CSX = AddCylindricalShell(CSX,'pml',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i));
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start(3) = 0; stop(3)=mesh_res(1)/2;
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
weight{1} = '(x)/(x*x+y*y)';
@ -62,7 +69,7 @@ weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddCylindricalShell(CSX,'excite',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i));
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','DumpMode',2);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
@ -72,9 +79,12 @@ CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',2);
CSX = AddBox(CSX,'Ht_',0,start,stop);
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
CSX = AddProbe(CSX,'ut1_1',0);
start = [ coax_rad_i 0 length/2 ];stop = [ coax_rad_ai 0 length/2 ];
CSX = AddBox(CSX,'ut1', 0 ,start,stop);
CSX = AddBox(CSX,'ut1_1', 0 ,start,stop);
CSX = AddProbe(CSX,'ut1_2',0);
start = [ coax_rad_i 0 length/2+mesh_res(3) ];stop = [ coax_rad_ai 0 length/2+mesh_res(3) ];
CSX = AddBox(CSX,'ut1_2', 0 ,start,stop);
%current calc
CSX = AddProbe(CSX,'it1',1);
@ -85,7 +95,7 @@ CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatoble xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -93,3 +103,20 @@ disp(command);
system(command)
cd(savePath);
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
i_f = UI.FD{3}.val;
delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s)
i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field
ZL = Z0/2/pi/sqrt(epsR)*log(coax_rad_ai/coax_rad_i); %analytic line-impedance of a coax
plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g');
hold on;
grid on;
Z = u_f./i_f2;
plot(UI.FD{1}.f,real(Z),'Linewidth',2);
plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2);
xlim([0 2*f0]);
legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
C0 = 1/sqrt(EPS0*MUE0);
@ -20,6 +21,7 @@ max_alpha = max_mesh;
N_alpha = ceil(rad_a * 2*pi / max_alpha);
mesh_res = [max_mesh 2*pi/N_alpha max_mesh];
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../'];
openEMS_opts = '';
openEMS_opts = [openEMS_opts ' --disable-dumps'];
@ -30,13 +32,13 @@ Sim_CSX = 'coax.xml';
mkdir(Sim_Path);
%setup FDTD parameter
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10);
FDTD = SetGaussExcite(FDTD,f0,f0);
BC = [0 0 1 1 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = rad_i : mesh_res(1) : rad_a;
mesh.y = linspace(0,2*pi,N_alpha);
@ -44,7 +46,7 @@ mesh.y = linspace(0,2*pi,N_alpha);
mesh.z = 0 : mesh_res(3) : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0/epsR;
CSX = AddMaterial(CSX,'pml');
@ -67,6 +69,7 @@ CSX = AddBox(CSX,'fill',0 ,start,stop);
start = [rad_i mesh.y(1) 0];
stop = [rad_a mesh.y(end) 0];
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
weight{1} = '1/rho';
weight{2} = 0;
@ -74,7 +77,7 @@ weight{3} = 0;
CSX = SetExcitationWeight(CSX, 'excite', weight );
CSX = AddBox(CSX,'excite',0 ,start,stop);
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','DumpMode',0);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
@ -101,7 +104,7 @@ CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatoble xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -109,6 +112,7 @@ disp(command);
system(command)
cd(savePath);
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
i_f = UI.FD{3}.val;

View File

@ -2,6 +2,7 @@ close all;
clear;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
feed_length=10;
wire_rad = sqrt(1.4/pi);
mesh_size = wire_rad;
@ -13,12 +14,14 @@ port_length = mesh_size; %coil_length/2;
port_resist = 1000;
f_max = 100e6;
f_excite = 1e9;
f_excite = 300e6;
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
openEMS_opts = [openEMS_opts ' --debug-material'];
openEMS_opts = [openEMS_opts ' --debug-boxes'];
% openEMS_opts = [openEMS_opts ' --debug-operator'];
Sim_Path = 'tmp';
@ -27,16 +30,16 @@ Sim_CSX = 'helix.xml';
rmdir(Sim_Path,'s');
mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD(5e5,1e-6);
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(30000,1e-6);
FDTD = SetGaussExcite(FDTD,f_excite/2,f_excite/2);
BC = [1 1 1 1 1 1];
FDTD = SetBoundaryCond(FDTD,BC);
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
add_Lines = mesh_size * 1.5.^(1:10);
add_Lines = add_Lines(find(add_Lines<(3e8/f_excite)/10*1e3));
%setup CSXCAD geometry
CSX = InitCSX();
mesh.x = -coil_rad-mesh_size : mesh_size : coil_rad+mesh_size+feed_length;
mesh.x = [mesh.x(1)-add_Lines mesh.x mesh.x(end)+add_Lines ];
@ -46,11 +49,10 @@ mesh.z = -mesh_size : mesh_size : coil_length+mesh_size;
mesh.z = [mesh.z(1)-add_Lines mesh.z mesh.z(end)+add_Lines ];
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%create copper helix and feed lines...
%% build/define helix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddMaterial(CSX,'copper');
CSX = SetMaterialProperty(CSX,'copper','Kappa',56e6);
%build helix-wire
dt = 1.0/coil_res;
height=0;
wire.Vertex = {};
@ -78,6 +80,7 @@ p(2,count+2) = 0;
p(3,count+2) = 0.5*(coil_length+port_length);
CSX = AddWire(CSX, 'copper', 0, p, wire_rad);
%% apply the excitation & resist as a current source%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddMaterial(CSX,'resist');
kappa = port_length/port_resist/wire_rad^2/pi/1e-3;
CSX = SetMaterialProperty(CSX,'resist','Kappa',kappa);
@ -87,10 +90,10 @@ stop=[coil_rad+feed_length 0 (coil_length+port_length)/2];
%start(3)=(coil_length-port_length)/2;stop(3)=(coil_length+port_length)/2;
CSX = AddCylinder(CSX,'resist',5 ,start,stop,wire_rad);
%excitation
CSX = AddExcitation(CSX,'excite',0,[0 0 1]);
CSX = AddCylinder(CSX,'excite', 0 ,start,stop,wire_rad);
%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
CSX = AddBox(CSX,'ut1', 0 ,stop,start);
@ -102,7 +105,7 @@ start(1) = start(1)-2;start(2) = start(2)-2;
stop(1) = stop(1)+2;stop(2) = stop(2)+2;
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_');
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
@ -113,10 +116,10 @@ start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
CSX = AddBox(CSX,'Ht_',0 , start,stop);
%Write openEMS compatoble xml-file
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -124,7 +127,7 @@ disp(command);
system(command)
cd(savePath);
%%%post-proc
%% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
U = ReadUI('ut1','tmp/');
I = ReadUI('it1','tmp/');
@ -147,5 +150,12 @@ plot(f(ind)*1e-6,R(ind),'Linewidth',2);
hold on
plot(f(ind)*1e-6,imag(Z(ind)),'r','Linewidth',2);
xlabel('frequency (MHz)');
ylabel('resistance (\Omega)');
ylabel('resistance (Ohm)');
grid on;
legend( {'real','imaginary'}, 'location', 'northwest' )
figure
plot(U.TD{1}.t/1e-6,U.TD{1}.val,'Linewidth',2);
xlabel('time (us)');
ylabel('amplitude (V)');
grid on;

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 250;
length = 1000;
width = 500;
@ -13,23 +14,24 @@ mesh_res = [5 5 10];
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
openEMS_opts = [openEMS_opts ' --debug-material'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
Sim_Path = 'tmp';
Sim_CSX = 'msl.xml';
mkdir(Sim_Path);
%setup FDTD parameter
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(5e5,1e-6);
FDTD = SetGaussExcite(FDTD,0.5e9,0.5e9);
BC = [1 1 0 1 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -width/2 : mesh_res(1) : width/2;
mesh.y = [linspace(0,MSL_height,11) MSL_height+1 MSL_height+3 MSL_height+mesh_res(2):mesh_res(2):height];
@ -46,7 +48,7 @@ start = [-0.5*MSL_width, 0 , 0];stop = [0.5*MSL_width, MSL_height , mesh_res(1)/
CSX = AddExcitation(CSX,'excite',0,[0 -1 0]);
CSX = AddBox(CSX,'excite',0 ,start,stop);
%%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -58,7 +60,7 @@ start = [mesh.x(1) mesh.y(1) length-abs_length];
stop = [mesh.x(end) mesh.y(end) length];
CSX = AddBox(CSX,'pml',0 ,start,stop);
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et_','DumpMode',2);
start = [mesh.x(1) , MSL_height/2 , mesh.z(1)];
stop = [mesh.x(end) , MSL_height/2 , mesh.z(end)];
@ -67,6 +69,7 @@ CSX = AddBox(CSX,'Et_',0 , start,stop);
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',2);
CSX = AddBox(CSX,'Ht_',0,start,stop);
%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%voltage calc
CSX = AddProbe(CSX,'ut1',0);
start = [ 0 MSL_height length/2 ];stop = [ 0 0 length/2 ];
@ -77,10 +80,10 @@ CSX = AddProbe(CSX,'it1',1);
start = [ -MSL_width MSL_height/2 length/2 ];stop = [ MSL_width MSL_height*1.5 length/2 ];
CSX = AddBox(CSX,'it1', 0 ,start,stop);
%Write openEMS compatoble xml-file
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 250;
length = 4000;
width = 1000;
@ -11,24 +12,25 @@ mesh_res = 25;
EPS0 = 8.85418781762e-12;
MUE0 = 1.256637062e-6;
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
% openEMS_opts = [openEMS_opts ' --debug-material'];
openEMS_opts = [openEMS_opts ' --engine=multithreaded'];
% openEMS_opts = [openEMS_opts ' --engine=multithreaded'];
Sim_Path = 'tmp';
Sim_CSX = 'plane_wave.xml';
mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD(5e5,1e-6);
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(5e5,1e-6,'OverSampling',10);
FDTD = SetGaussExcite(FDTD,0.5e9,0.5e9);
BC = [1 1 0 0 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = -width/2 : mesh_res : width/2;
mesh.y = -height/2 : mesh_res : height/2;
@ -36,7 +38,7 @@ mesh.z = 0 : mesh_res : length;
CSX = DefineRectGrid(CSX, 1e-3,mesh);
%%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -48,24 +50,25 @@ start=[-width/2 -height/2 length-abs_length];
stop=[width/2 height/2 length];
CSX = AddBox(CSX,'pml',0 ,start,stop);
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start=[-width/2 -height/2 0];
stop=[width/2 height/2 0];
CSX = AddExcitation(CSX,'excite',0,[0 1 0]);
CSX = AddBox(CSX,'excite',0 ,start,stop);
%dump
CSX = AddDump(CSX,'Et','FileType',1);
start = [mesh.x(1) , 0 , mesh.z(1)];
stop = [mesh.x(end) , 0 , mesh.z(end)];
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,1');
start = [mesh.x(1) , mesh.y(1) , mesh.z(1)];
stop = [mesh.x(end) , mesh.y(end) , mesh.z(end)];
CSX = AddBox(CSX,'Et',0 , start,stop);
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1);
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,1');
CSX = AddBox(CSX,'Ht',0,start,stop);
%Write openEMS compatoble xml-file
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -73,11 +76,11 @@ disp(command);
system(command)
cd(savePath);
% plotting
PlotArgs.plane='zx';
%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PlotArgs.slice = {mesh.x(round(end/2)) mesh.y(round(end/2)) mesh.z(round(end/2))};
PlotArgs.pauseTime=0.01;
PlotArgs.component=2;
PlotArgs.zlim='auto';
PlotArgs.Limit = 'auto';
PlotHDF5FieldData('tmp/Et.h5',PlotArgs)

View File

@ -2,6 +2,7 @@ close all;
clear all;
clc
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
abs_length = 250;
length = 4000;
unit = 1e-3;
@ -29,6 +30,7 @@ beta = sqrt(k^2 - kc^2);
func_Ex = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
func_Ey = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
%% define file pathes and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
openEMS_Path = [pwd() '/../../']
openEMS_opts = '';
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
@ -40,21 +42,20 @@ Sim_CSX = 'rect_wg.xml';
mkdir(Sim_Path);
%setup FDTD parameter
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD(500,1e-6,'OverSampling',6);
FDTD = SetSinusExcite(FDTD,f0);
BC = [0 0 0 0 0 0];
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = InitCSX();
mesh.x = 0 : mesh_res(1) : width;
mesh.y = 0 : mesh_res(2) : height;
mesh.z = -length: mesh_res(3) : length;
CSX = DefineRectGrid(CSX, unit,mesh);
%%%fake pml
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
finalKappa = 0.3/abs_length^4;
finalSigma = finalKappa*MUE0/EPS0;
CSX = AddMaterial(CSX,'pml');
@ -69,6 +70,7 @@ start=[0 0 -length+abs_length];
stop=[width height -length];
CSX = AddBox(CSX,'pml',0 ,start,stop);
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
start=[0 0 0];
stop=[width height 0];
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
@ -78,7 +80,7 @@ weight{3} = 0;
CSX = SetExcitationWeight(CSX,'excite',weight);
CSX = AddBox(CSX,'excite',0 ,start,stop);
%dump
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CSX = AddDump(CSX,'Et','FileType',1);
start = [mesh.x(1) , height/2 , mesh.z(1)];
stop = [mesh.x(end) , height/2 , mesh.z(end)];
@ -87,10 +89,10 @@ CSX = AddBox(CSX,'Et',0 , start,stop);
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1);
CSX = AddBox(CSX,'Ht',0,start,stop);
%Write openEMS compatoble xml-file
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
%cd to working dir and run openEMS
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
savePath = pwd();
cd(Sim_Path); %cd to working dir
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
@ -98,11 +100,11 @@ disp(command);
system(command)
cd(savePath);
% plotting
PlotArgs.plane='zx';
PlotArgs.pauseTime=0.1;
%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PlotArgs.slice = {mesh.x(round(end/2)) mesh.y(round(end/2)) mesh.z(round(end/2))};
PlotArgs.pauseTime=0.01;
PlotArgs.component=2;
PlotArgs.zlim='auto';
PlotArgs.Limit = 'auto';
PlotHDF5FieldData('tmp/Et.h5',PlotArgs)

File diff suppressed because one or more lines are too long

View File

@ -1,25 +1,32 @@
# -------------------------------------------------
# Project created by QtCreator 2010-02-26T22:34:51
# -------------------------------------------------
QT -= gui \
core
TARGET = openEMS
CONFIG += console
CONFIG -= app_bundle qt
TEMPLATE = app
OBJECTS_DIR = obj
INCLUDEPATH += .
INCLUDEPATH += ../CSXCAD \
../fparser \
../tinyxml
LIBS += -L../CSXCAD \
-lCSXCAD \
-L../fparser \
-lfparser \
-L../tinyxml \
-ltinyxml \
-lboost_thread \
-lhdf5 \
-lhdf5_cpp
LIBS += -L../CSXCAD -lCSXCAD
win32 {
INCLUDEPATH += ../hdf5/include ../boost/include/boost-1_42
LIBS += ../hdf5/lib/libhdf5_cpp.a ../hdf5/lib/libhdf5.a
LIBS += ../boost/lib/libboost_thread-mgw44-mt.lib
LIBS += -L../CSXCAD/release
LIBS += ../fparser/release/libfparser4.a
LIBS += ../tinyxml/release/libtinyxml2.a
}
!win32 {
LIBS += ../fparser/libfparser.so
LIBS += ../tinyxml/libtinyxml.so
LIBS += -lboost_thread
LIBS += -lhdf5 -lhdf5_cpp
}
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../CSXCAD\'
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../fparser\'
QMAKE_LFLAGS += \'-Wl,-rpath,\$$ORIGIN/../tinyxml\'
@ -38,9 +45,13 @@ SOURCES += main.cpp \
openems.cpp \
FDTD/engine_multithread.cpp \
FDTD/operator_cylinder.cpp \
FDTD/engine_cylinder.cpp \
FDTD/engine_cylinder.cpp \
FDTD/engine_sse.cpp \
FDTD/operator_sse.cpp
FDTD/operator_sse.cpp \
FDTD/operator_extension.cpp \
FDTD/engine_extension.cpp \
FDTD/engine_ext_mur_abc.cpp \
FDTD/operator_ext_mur_abc.cpp
HEADERS += tools/ErrorMsg.h \
tools/AdrOp.h \
tools/constants.h \
@ -55,13 +66,72 @@ HEADERS += tools/ErrorMsg.h \
examples/FDTD_examples.h \
openems.h \
FDTD/engine_multithread.h \
FDTD/operator_cylinder.h \
FDTD/engine_cylinder.h \
FDTD/operator_cylinder.h \
FDTD/engine_sse.h \
FDTD/operator_sse.h
QMAKE_CXXFLAGS_RELEASE = -O3 \
FDTD/operator_sse.h \
FDTD/engine_cylinder.h \
FDTD/operator_extension.h \
FDTD/engine_extension.h \
FDTD/engine_ext_mur_abc.h \
FDTD/operator_ext_mur_abc.h
QMAKE_CXXFLAGS_RELEASE = -O2 \
-g \
-march=native
-march=native
QMAKE_CXXFLAGS_DEBUG = -O0 \
-g \
-march=native
#
# to use ABI2 target:
# qmake CONFIG+="ABI2 bits64" -o Makefile.ABI2-64 openEMS.pro
# make -fMakefile.ABI2-64
#
ABI2 {
CONFIG-=debug debug_and_release
CONFIG+=release
QMAKE_CFLAGS_RELEASE=-O2 -fabi-version=2
QMAKE_CXXFLAGS_RELEASE=-O2 -fabi-version=2
QMAKE_CC = apgcc
QMAKE_CXX = apg++
QMAKE_LINK = apg++
QMAKE_LINK_SHLIB = apg++
QMAKE_LFLAGS_RPATH =
QMAKE_LFLAGS = \'-Wl,-rpath,\$$ORIGIN/lib\'
}
bits64 {
QMAKE_CXXFLAGS_RELEASE+=-m64 -march=athlon64
QMAKE_LFLAGS_RELEASE+=-m64 -march=athlon64
OBJECTS_DIR = ABI2-64
LIBS = ../CSXCAD/ABI2-64/libCSXCAD.so
LIBS += ../fparser/ABI2-64/libfparser.so
LIBS += ../tinyxml/ABI2-64/libtinyxml.so
LIBS += ../boost-64/lib/libboost_thread.so
LIBS += ../hdf5-64/lib/libhdf5.so
LIBS += ../hdf5-64/lib/libhdf5_cpp.so -lpthread
INCLUDEPATH += ../hdf5-64/include
INCLUDEPATH += ../boost-64/include
}
bits32 {
QMAKE_CXXFLAGS_RELEASE+=-m32 -march=i686
QMAKE_LFLAGS_RELEASE+=-m32 -march=i686
OBJECTS_DIR = ABI2-32
LIBS = ../CSXCAD/ABI2-32/libCSXCAD.so
LIBS += ../fparser/ABI2-32/libfparser.so
LIBS += ../tinyxml/ABI2-32/libtinyxml.so
LIBS += ../boost-32/lib/libboost_thread.so
LIBS += ../hdf5-32/lib/libhdf5.so
LIBS += ../hdf5-32/lib/libhdf5_cpp.so
INCLUDEPATH += ../hdf5-32/include
INCLUDEPATH += ../boost-32/include
}
ABI2 {
DESTDIR = $$OBJECTS_DIR
MOC_DIR = $$OBJECTS_DIR
UI_DIR = $$OBJECTS_DIR
RCC_DIR = $$OBJECTS_DIR
}

View File

@ -22,6 +22,7 @@
#include "FDTD/engine_cylinder.h"
#include "FDTD/engine_multithread.h"
#include "FDTD/engine_sse.h"
#include "FDTD/operator_ext_mur_abc.h"
#include "FDTD/processvoltage.h"
#include "FDTD/processcurrent.h"
#include "FDTD/processfields_td.h"
@ -265,6 +266,18 @@ int openEMS::SetupFDTD(const char* file)
if (FDTD_Op->SetGeometryCSX(&CSX)==false) return(2);
/**************************** create all operator/engine extensions here !!!! **********************************/
//Mur-ABC
for (int n=0;n<6;++n)
{
if (bounds[n]==2)
{
Operator_Ext_Mur_ABC* op_ext_mur = new Operator_Ext_Mur_ABC(FDTD_Op);
op_ext_mur->SetDirection(n/2,n%2);
FDTD_Op->AddExtension(op_ext_mur);
}
}
FDTD_Op->CalcECOperator();
SetupExcitation(FDTD_Opts->FirstChildElement("Excitation"));

View File

@ -18,6 +18,33 @@
#include "array_ops.h"
#include <ostream>
FDTD_FLOAT** Create2DArray(const unsigned int* numLines)
{
FDTD_FLOAT** array=NULL;
unsigned int pos[3];
array = new FDTD_FLOAT*[numLines[0]];
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
array[pos[0]] = new FDTD_FLOAT[numLines[1]];
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
array[pos[0]][pos[1]] = 0;
}
}
return array;
}
void Delete2DArray(FDTD_FLOAT** array, const unsigned int* numLines)
{
if (array==NULL) return;
unsigned int pos[3];
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
delete[] array[pos[0]];
}
delete[] array;
}
FDTD_FLOAT*** Create3DArray(const unsigned int* numLines)
{
FDTD_FLOAT*** array=NULL;

View File

@ -33,6 +33,9 @@ union f4vector
#include "FDTD/operator.h"
FDTD_FLOAT** Create2DArray(const unsigned int* numLines);
void Delete2DArray(FDTD_FLOAT** array, const unsigned int* numLines);
FDTD_FLOAT*** Create3DArray(const unsigned int* numLines);
void Delete3DArray(FDTD_FLOAT*** array, const unsigned int* numLines);