Tutorials update using new nf2ff calc

pull/1/head
Thorsten Liebig 2012-02-07 10:13:50 +01:00
parent 755ff7f420
commit d0d2593ab3
4 changed files with 110 additions and 160 deletions

View File

@ -6,7 +6,7 @@
%
% Tested with
% - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26
% - openEMS v0.0.27
%
% (C) 2011,2012 Thorsten Liebig <thorsten.liebig@gmx.de>
@ -44,7 +44,7 @@ f_stop = 6e9;
f_rad = (1.9:0.1:4.2)*1e9;
Plot_3D_Rad_Pattern = 0; %this may take a very very long time! > 7h
Plot_3D_Rad_Pattern = 1; %this may take a long time! > 30min
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
FDTD = InitFDTD( 20000 );
@ -99,7 +99,7 @@ portstop = [ -(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0];
portstart = [ feed_length+(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)];
portstop = [ +(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0];
[CSX,portstruct{2}] = AddMSLPort( CSX, 999, 2, 'PEC', portstart, portstop, 0, [0 0 -1], 'MeasPlaneShift', feed_length/2, 'Feed_R', 50 );
%% nf2ff calc
start = [mesh.x(1) mesh.y(1) mesh.z(1) ] + 10*resolution;
@ -107,7 +107,7 @@ stop = [mesh.x(end) mesh.y(end) mesh.z(end)] - 10*resolution;
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
%% write/show/run the openEMS compatible xml-file
Sim_Path = 'tmp';
Sim_Path = 'tmp_CRLH_LeakyWave';
Sim_CSX = 'CRLH.xml';
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
@ -139,43 +139,52 @@ ylim([-40 2]);
drawnow
%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
thetaRange = (0:3:359) - 180;
for n=1:numel(f_rad)
f_res = f_rad(n)
% calculate the far field at phi=0 degrees and at phi=90 degrees
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg...' );
[E_far_theta{n},E_far_phi{n},Prad(n),Dmax(n)] = AnalyzeNF2FF( Sim_Path, nf2ff, f_res, thetaRange, 0, r );
toc
end
theta = (0:3:359) - 180;
phi = [0 90];
disp( 'calculating far field at phi=[0 90] deg...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_rad, theta*pi/180, phi*pi/180, 1, 'Verbose',1);
nf2ff = ReadNF2FF(nf2ff);
%%
Dlog=10*log10(Dmax);
figure
thetaRange = (0:3:359) - 180;
% prepare figures
figure(10)
hold on;
grid on;
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
title('phi = 0°');
ylim([-20 10]);
figure(11)
hold on;
grid on;
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
title('phi = 90°');
ylim([-20 10]);
line_styles = {'b-','g:','r-.','c--','m-','y:','k-.'};
for n=1:numel(f_rad)
f_res = f_rad(n)
% display power and directivity
disp( ['radiated power: Prad = ' num2str(Prad(n)) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog(n)) ' dBi'] );
disp( ['frequency: f = ' num2str(f_res/1e9) ' GHz']);
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad(n)) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax(n)) ' (' num2str(10*log10(nf2ff.Dmax(n))) ' dBi)'] );
% calculate the e-field magnitude for phi = 0 deg
E_phi0_far{n} = zeros(1,numel(thetaRange));
for m=1:numel(thetaRange)
E_phi0_far{n}(m) = norm( [E_far_theta{n}(m,1) E_far_phi{n}(m,1)] );
end
% normalized directivity
D_log = 20*log10(nf2ff.E_norm{n}/max(max(nf2ff.E_norm{n})));
% directivity
D_log = D_log + 10*log10(nf2ff.Dmax(n));
E_phi0_far_log{n} = 20*log10(abs(E_phi0_far{n})/max(abs(E_phi0_far{n})));
E_phi0_far_log{n} = E_phi0_far_log{n} + Dlog(n);
figure(10)
plot( nf2ff.theta, D_log(:,1) ,line_styles{1+mod(n-1,numel(line_styles))});
hold on;
% display polar plot
plot( thetaRange, E_phi0_far_log{n} ,'k-' );
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
grid on;
ylim([-20 10]);
pause(0.5)
figure(11)
plot( nf2ff.theta, D_log(:,2) ,line_styles{1+mod(n-1,numel(line_styles))} );
hold on;
end
if (Plot_3D_Rad_Pattern==0)
@ -183,39 +192,17 @@ if (Plot_3D_Rad_Pattern==0)
end
%% calculate 3D pattern
for n=1:numel(f_rad)
f_res = f_rad(n);
phiRange = 0:3:360;
thetaRange = 0:3:180;
r = 1; % evaluate fields at radius r
disp( 'calculating 3D far field...' );
[E_far_theta_3D{n},E_far_phi_3D{n}] = AnalyzeNF2FF( Sim_Path, nf2ff, f_res, thetaRange, phiRange, r );
end
phi = 0:3:360;
theta = 0:3:180;
disp( 'calculating 3D far field pattern...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_rad, theta*pi/180, phi*pi/180, 1, 'Verbose',2);
nf2ff = ReadNF2FF(nf2ff);
%%
figure
disp( 'dumping 3D far field pattern to vtk, use Paraview to visualize...' );
for n=1:numel(f_rad)
f_res = f_rad(n);
E_far_3D{n} = sqrt( abs(E_far_theta_3D{n}).^2 + abs(E_far_phi_3D{n}).^2 );
E_far_normalized_3D{n} = E_far_3D{n} / max(E_far_3D{n}(:)) * max(Dmax);
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
x = E_far_normalized_3D{n} .* sin(theta) .* cos(phi);
y = E_far_normalized_3D{n} .* sin(theta) .* sin(phi);
z = E_far_normalized_3D{n} .* cos(theta);
surf( x,y,z, E_far_normalized_3D{n},'EdgeColor','none');
caxis([0 max(Dmax)]);
axis equal
xlabel( 'x' );
xlim([-6 6]);
ylabel( 'y' );
ylim([-6 6]);
zlabel( 'z' );
zlim([-4 10]);
title(['f=' num2str(f_res*1e-9,3) 'GHz - D=' num2str(Dlog(n),3) 'dBi'],'FontSize',12)
pause(0.5)
DumpFF2VTK( [Sim_Path '/FF_Pattern_' int2str(f_res/1e6) 'MHz.vtk'],E_far_normalized_3D,thetaRange,phiRange,1e-3);
E_far_normalized_3D = nf2ff.E_norm{n} / max(max(nf2ff.E_norm{n})) * nf2ff.Dmax(n);
DumpFF2VTK( [Sim_Path '/FF_Pattern_' int2str(f_rad(n)/1e6) 'MHz.vtk'],E_far_normalized_3D,theta,phi,1e-3);
end

View File

@ -6,7 +6,7 @@
%
% Tested with
% - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26
% - openEMS v0.0.27
%
% (C) 2011,2012 Thorsten Liebig <thorsten.liebig@uni-due.de>
@ -70,7 +70,7 @@ if (f_start<fc)
end
%% setup FDTD parameter & excitation function
FDTD = InitFDTD( 30000 );
FDTD = InitFDTD( 30000, 1e-4 );
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );
@ -123,6 +123,11 @@ start=[0 0 mesh.z(8)-0.1 ];
stop =[0 0 mesh.z(8)+0.1 ];
CSX = AddCylinder(CSX,'excite',0 ,start,stop,horn.radius);
CSX = AddDump(CSX,'Exc_dump');
start=[-horn.radius -horn.radius mesh.z(8)-0.1 ];
stop =[+horn.radius +horn.radius mesh.z(8)+0.1 ];
CSX = AddBox(CSX,'Exc_dump',0,start,stop);
%% voltage and current definitions using the mode matching probes %%%%%%%%%
%port 1
start = [-horn.radius -horn.radius mesh.z(1)+horn.feed_length/2];
@ -181,56 +186,44 @@ drawnow
thetaRange = (0:2:359) - 180;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg...' );
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f0, thetaRange, [0 90], r );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180);
Dlog=10*log10(Dmax);
Dlog=10*log10(nf2ff.Dmax);
G_a = 4*pi*A/(c0/f0)^2;
e_a = Dmax/G_a;
e_a = nf2ff.Dmax/G_a;
% display some antenna parameter
disp( ['radiated power: Prad = ' num2str(Prad) ' Watt']);
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] );
%%
% calculate the e-field magnitude for phi = 0 deg
E_phi0_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] );
end
E_phi0_far_log = 20*log10(abs(E_phi0_far)/max(abs(E_phi0_far)));
E_phi0_far_log = E_phi0_far_log + Dlog;
%%
% normalized directivity
D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1})));
% directivity
D_log = D_log + 10*log10(nf2ff.Dmax);
% display polar plot
figure
plot( thetaRange, E_phi0_far_log ,'k-' );
plot( nf2ff.theta, D_log(:,1) ,'k-' );
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
grid on;
hold on;
% calculate the e-field magnitude for phi = 90 deg
E_phi90_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]);
end
E_phi90_far_log = 20*log10(abs(E_phi90_far)/max(abs(E_phi90_far)));
E_phi90_far_log = E_phi90_far_log + Dlog;
% display polar plot
plot( thetaRange, E_phi90_far_log ,'r-' );
plot( nf2ff.theta, D_log(:,2) ,'r-' );
legend('phi=0','phi=90')
drawnow
%% calculate 3D pattern
phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) );
thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ]));
r = 1; % evaluate fields at radius r
disp( 'calculating 3D far field...' );
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f0, thetaRange, phiRange, r );
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
E_far_normalized = E_far / max(E_far(:)) * Dmax;
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');
E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
x = E_far_normalized .* sin(theta) .* cos(phi);

View File

@ -6,7 +6,7 @@
%
% Tested with
% - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26
% - openEMS v0.0.27
%
% (C) 2011,2012 Thorsten Liebig <thorsten.liebig@uni-due.de>
@ -161,10 +161,10 @@ CSX = AddBox(CSX,'it1', 0 ,start,stop);
%% nf2ff calc
start = [mesh.x(9) mesh.y(9) mesh.z(9)];
stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, [1 1 1 1 0 1]);
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'Directions', [1 1 1 1 0 1]);
%% prepare simulation folder
Sim_Path = 'tmp';
Sim_Path = 'tmp_Horn_Antenna';
Sim_CSX = 'horn_ant.xml';
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
@ -205,58 +205,44 @@ drawnow
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = (0:2:359) - 180;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg...' );
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f0, thetaRange, [0 90], r );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180);
Dlog=10*log10(Dmax);
Dlog=10*log10(nf2ff.Dmax);
G_a = 4*pi*A/(c0/f0)^2;
e_a = Dmax/G_a;
e_a = nf2ff.Dmax/G_a;
% display some antenna parameter
disp( ['radiated power: Prad = ' num2str(Prad) ' Watt']);
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] );
%%
% calculate the e-field magnitude for phi = 0 deg
E_phi0_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] );
end
E_phi0_far_log = 20*log10(abs(E_phi0_far)/max(abs(E_phi0_far)));
E_phi0_far_log = E_phi0_far_log + Dlog;
% normalized directivity
D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1})));
% directivity
D_log = D_log + 10*log10(nf2ff.Dmax);
% display polar plot
figure
plot( thetaRange, E_phi0_far_log ,'k-' );
plot( nf2ff.theta, D_log(:,1) ,'k-' );
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
grid on;
hold on;
% calculate the e-field magnitude for phi = 90 deg
E_phi90_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]);
end
E_phi90_far_log = 20*log10(abs(E_phi90_far)/max(abs(E_phi90_far)));
E_phi90_far_log = E_phi90_far_log + Dlog;
% display polar plot
plot( thetaRange, E_phi90_far_log ,'r-' );
plot( nf2ff.theta, D_log(:,2) ,'r-' );
legend('phi=0','phi=90')
drawnow
%% calculate 3D pattern
phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) );
thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ]));
r = 1; % evaluate fields at radius r
disp( 'calculating 3D far field...' );
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f0, thetaRange, phiRange, r );
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
E_far_normalized = E_far / max(E_far(:)) * Dmax;
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5');
E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);
x = E_far_normalized .* sin(theta) .* cos(phi);

View File

@ -6,7 +6,7 @@
%
% Tested with
% - Matlab 2011a / Octave 3.4.3
% - openEMS v0.0.26
% - openEMS v0.0.27
%
% (C) 2010-2012 Thorsten Liebig <thorsten.liebig@uni-due.de>
@ -94,7 +94,7 @@ SimBox = SimBox - max_res * 4; %reduced SimBox size for nf2ff box
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', -SimBox/2, SimBox/2);
%% prepare simulation folder
Sim_Path = 'tmp';
Sim_Path = 'tmp_Patch_Ant';
Sim_CSX = 'patch_ant.xml';
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
@ -107,12 +107,12 @@ WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
%% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX );
RunOpenEMS( Sim_Path, Sim_CSX);
%% postprocessing & do the plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
U = ReadUI( {'port_ut1','et'}, 'tmp/', freq ); % time domain/freq domain voltage
I = ReadUI( 'port_it1', 'tmp/', freq ); % time domain/freq domain current (half time step is corrected)
U = ReadUI( {'port_ut1','et'}, Sim_Path, freq ); % time domain/freq domain voltage
I = ReadUI( 'port_it1', Sim_Path, freq ); % time domain/freq domain current (half time step is corrected)
% plot feed point impedance
figure
@ -150,44 +150,28 @@ f_res = freq(f_res_ind);
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = (0:2:359) - 180;
r = 1; % evaluate fields at radius r
phiRange = (0:2:359) - 180;
disp( 'calculating far field at phi=[0 90] deg...' );
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_res, thetaRange, [0 90], r );
Dlog=10*log10(Dmax);
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, [0 90]*pi/180);
% display power and directivity
disp( ['radiated power: Prad = ' num2str(Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] );
disp( ['efficiency: nu_rad = ' num2str(100*Prad./real(P_in(f_res_ind))) ' %']);
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./real(P_in(f_res_ind))) ' %']);
% calculate the e-field magnitude for phi = 0 deg
E_phi0_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] );
end
E_phi0_far_log = 20*log10(abs(E_phi0_far)/max(abs(E_phi0_far)));
E_phi0_far_log = E_phi0_far_log + Dlog;
% normalized directivity
D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1})));
% directivity
D_log = D_log + 10*log10(nf2ff.Dmax);
% display polar plot
figure
plot( thetaRange, E_phi0_far_log ,'k-' );
plot( nf2ff.theta, D_log(:,1) ,'k-' );
xlabel( 'theta (deg)' );
ylabel( 'directivity (dBi)');
grid on;
hold on;
% calculate the e-field magnitude for phi = 90 deg
E_phi90_far = zeros(1,numel(thetaRange));
for n=1:numel(thetaRange)
E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]);
end
E_phi90_far_log = 20*log10(abs(E_phi90_far)/max(abs(E_phi90_far)));
E_phi90_far_log = E_phi90_far_log + Dlog;
% display polar plot
plot( thetaRange, E_phi90_far_log ,'r-' );
plot( nf2ff.theta, D_log(:,2) ,'r-' );
legend('phi=0','phi=90')