new example: bi-quad antenna
Signed-off-by: Thorsten Liebig <Thorsten.Liebig@gmx.de>pull/12/head
parent
a166f3d7a5
commit
d6ca840411
|
@ -0,0 +1,139 @@
|
|||
%
|
||||
% Tutorials / bi-quad antenna
|
||||
%
|
||||
% Tested with
|
||||
% - Octave 3.8.1
|
||||
% - openEMS v0.0.32
|
||||
%
|
||||
% (C) 2011-2014 Thorsten Liebig <thorsten.liebig@uni-due.de>
|
||||
|
||||
close all
|
||||
clear
|
||||
clc
|
||||
|
||||
%% setup the simulation
|
||||
physical_constants;
|
||||
unit = 1e-3; % all length in mm
|
||||
|
||||
quad_size = 110;
|
||||
port_length = 10;
|
||||
quad_mesh = 5;
|
||||
|
||||
Feed_R = 75;
|
||||
|
||||
% size of the simulation box
|
||||
SimBox = [800 800 400];
|
||||
|
||||
% frequency range of interest
|
||||
f_start = 400e6;
|
||||
f_stop = 1000e6;
|
||||
|
||||
% frequency of interest
|
||||
f0 = 700e6;
|
||||
freq = linspace(f_start,f_stop,201);
|
||||
|
||||
%% setup FDTD parameter & excitation function
|
||||
FDTD = InitFDTD( 'endCriteria', 1e-4 );
|
||||
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
|
||||
BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions
|
||||
FDTD = SetBoundaryCond( FDTD, BC );
|
||||
|
||||
%% setup CSXCAD geometry & mesh
|
||||
CSX = InitCSX();
|
||||
|
||||
%create fixed lines for the antenna outline and port
|
||||
mesh.x = [-quad_size*sqrt(2) -quad_size/sqrt(2) 0 quad_size/sqrt(2) quad_size*sqrt(2)];
|
||||
mesh.y = [-quad_size/sqrt(2) -port_length/2 0 port_length/2 quad_size/sqrt(2)];
|
||||
mesh.z = [0];
|
||||
|
||||
mesh = SmoothMesh(mesh, quad_mesh, 1.3);
|
||||
|
||||
% add air box
|
||||
mesh.x = [mesh.x -SimBox(1)/2 SimBox(1)/2];
|
||||
mesh.y = [mesh.y -SimBox(2)/2 SimBox(2)/2];
|
||||
mesh.z = [-SimBox(3)/2 0 SimBox(3)/2];
|
||||
|
||||
max_res = c0 / (f_stop) / unit / 20; % cell size: lambda/20
|
||||
mesh = SmoothMesh(mesh, max_res, 1.4);
|
||||
|
||||
CSX = DefineRectGrid( CSX, unit, mesh );
|
||||
|
||||
%% create bi-quad
|
||||
points(1,1) = 0;
|
||||
points(2,1) = port_length/2;
|
||||
points(3,1) = 0;
|
||||
points(1,end+1) = quad_size/sqrt(2);
|
||||
points(2,end) = quad_size/sqrt(2);
|
||||
points(1,end+1) = quad_size*sqrt(2);
|
||||
points(2,end) = 0;
|
||||
points(1,end+1) = quad_size/sqrt(2);
|
||||
points(2,end) = -quad_size/sqrt(2);
|
||||
points(1,end+1) = 0;
|
||||
points(2,end) = -port_length/2;
|
||||
points(1,end+1) = -quad_size/sqrt(2);
|
||||
points(2,end) = -quad_size/sqrt(2);
|
||||
points(1,end+1) = -quad_size*sqrt(2);
|
||||
points(2,end) = 0;
|
||||
points(1,end+1) = -quad_size/sqrt(2);
|
||||
points(2,end) = quad_size/sqrt(2);
|
||||
points(1,end+1) = 0;
|
||||
points(2,end) = port_length/2;
|
||||
|
||||
% create a thin metal wire...
|
||||
CSX = AddMetal(CSX,'metal'); %create PEC with propName 'metal'
|
||||
CSX = AddCurve(CSX,'metal',10, points);
|
||||
|
||||
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
start = [0 -port_length/2 0];
|
||||
stop = [0 port_length/2 0];
|
||||
[CSX port] = AddLumpedPort(CSX,10,0,Feed_R,start,stop,[0 1 0], true);
|
||||
|
||||
%% nf2ff calc
|
||||
start = [mesh.x(9) mesh.y(9) mesh.z(9)];
|
||||
stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)];
|
||||
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
|
||||
|
||||
%% prepare simulation folder
|
||||
Sim_Path = 'tmp';
|
||||
Sim_CSX = 'bi_quad_ant.xml';
|
||||
|
||||
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
|
||||
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
|
||||
|
||||
%% write openEMS compatible xml-file
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX], FDTD, CSX);
|
||||
|
||||
%% show the structure
|
||||
CSXGeomPlot([Sim_Path '/' Sim_CSX]);
|
||||
|
||||
%% run openEMS
|
||||
RunOpenEMS(Sim_Path, Sim_CSX);
|
||||
|
||||
%% postprocessing & do the plots
|
||||
port = calcPort(port, Sim_Path, freq);
|
||||
s11 = port.uf.ref ./ port.uf.inc;
|
||||
|
||||
% plot reflection coefficient S11
|
||||
figure
|
||||
plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
|
||||
ylim([-30 0]);
|
||||
grid on
|
||||
title( 'reflection coefficient S_{11}' );
|
||||
xlabel( 'frequency f / GHz' );
|
||||
ylabel( 'reflection coefficient |S_{11}|' );
|
||||
|
||||
%% calculate 3D far field pattern
|
||||
phiRange = -180:2.5:180;
|
||||
thetaRange = 0:2.5:180;
|
||||
|
||||
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180);
|
||||
|
||||
disp( ['directivity: Dmax = ' num2str(10*log10(nf2ff.Dmax)) ' dBi'] );
|
||||
|
||||
% plot far-field pattern with Matlab
|
||||
figure
|
||||
plotFF3D(nf2ff, 'logscale', -20)
|
||||
|
||||
%%
|
||||
disp( 'Dumping far-field pattern to vtk (use Paraview to visualize)...' );
|
||||
DumpFF2VTK('Bi_Quad_Pattern.vtk', nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax, thetaRange, phiRange, 'scale', 0.05);
|
Loading…
Reference in New Issue