Mode matching probe: fixed an error in HField interpolation
Now also excluding the boundaries from the MM. Updated waveguide example: Rect_Waveguide.m Signed-off-by: Thorsten Liebig <Thorsten.Liebig@gmx.de>pull/1/head
parent
1586c76af6
commit
f204bc2723
|
@ -61,6 +61,12 @@ void ProcessModeMatch::InitProcess()
|
|||
stop[n]=help;
|
||||
}
|
||||
|
||||
//exclude boundaries from mode-matching
|
||||
if (start[n]==0)
|
||||
++start[n];
|
||||
if (stop[n]==Op->GetNumberOfLines(n)-1)
|
||||
--stop[n];
|
||||
|
||||
if (stop[n]>start[n])
|
||||
++Dump_Dim;
|
||||
|
||||
|
@ -185,7 +191,7 @@ void ProcessModeMatch::SetFieldType(int type)
|
|||
cerr << "ProcessModeMatch::SetFieldType: Warning, unknown field type..." << endl;
|
||||
}
|
||||
|
||||
double ProcessModeMatch::GetField(int ny, unsigned int pos[3])
|
||||
double ProcessModeMatch::GetField(int ny, const unsigned int pos[3])
|
||||
{
|
||||
if (m_ModeFieldType==0)
|
||||
return GetEField(ny,pos);
|
||||
|
@ -194,7 +200,7 @@ double ProcessModeMatch::GetField(int ny, unsigned int pos[3])
|
|||
return 0;
|
||||
}
|
||||
|
||||
double ProcessModeMatch::GetEField(int ny, unsigned int pos[3])
|
||||
double ProcessModeMatch::GetEField(int ny, const unsigned int pos[3])
|
||||
{
|
||||
if ((pos[ny]==0) || (pos[ny]==Op->GetNumberOfLines(ny)-1))
|
||||
return 0.0;
|
||||
|
@ -210,7 +216,7 @@ double ProcessModeMatch::GetEField(int ny, unsigned int pos[3])
|
|||
return 0.0;
|
||||
}
|
||||
|
||||
double ProcessModeMatch::GetHField(int ny, unsigned int pos[3])
|
||||
double ProcessModeMatch::GetHField(int ny, const unsigned int pos[3])
|
||||
{
|
||||
if ((pos[ny]==0) || (pos[ny]>=Op->GetNumberOfLines(ny)-1))
|
||||
return 0.0;
|
||||
|
@ -218,19 +224,19 @@ double ProcessModeMatch::GetHField(int ny, unsigned int pos[3])
|
|||
unsigned int EngPos[] = {pos[0],pos[1],pos[2]};
|
||||
|
||||
int nyP = (ny+1)%3;
|
||||
if (pos[nyP] >= Op->GetNumberOfLines(nyP)-1)
|
||||
if (pos[nyP] == 0)
|
||||
return 0.0;
|
||||
int nyPP = (ny+2)%3;
|
||||
if (pos[nyPP] >= Op->GetNumberOfLines(nyPP)-1)
|
||||
if (pos[nyPP] == 0)
|
||||
return 0.0;
|
||||
|
||||
double hfield = Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
EngPos[nyP]++;
|
||||
hfield += Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
EngPos[nyPP]++;
|
||||
hfield += Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
EngPos[nyP]--;
|
||||
hfield += Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
EngPos[nyPP]--;
|
||||
hfield += Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
EngPos[nyP]++;
|
||||
hfield += Eng->GetCurr(ny,EngPos) / Op->GetMeshDelta(ny,EngPos,true);
|
||||
return hfield/4.0;
|
||||
}
|
||||
|
||||
|
|
|
@ -43,9 +43,9 @@ protected:
|
|||
|
||||
int m_ModeFieldType;
|
||||
|
||||
double GetField(int ny, unsigned int pos[3]);
|
||||
double GetEField(int ny, unsigned int pos[3]);
|
||||
double GetHField(int ny, unsigned int pos[3]);
|
||||
double GetField(int ny, const unsigned int pos[3]);
|
||||
double GetEField(int ny, const unsigned int pos[3]);
|
||||
double GetHField(int ny, const unsigned int pos[3]);
|
||||
|
||||
string m_ModeFunction[3];
|
||||
CSFunctionParser* m_ModeParser[2];
|
||||
|
|
|
@ -3,13 +3,13 @@ clear
|
|||
clc
|
||||
|
||||
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
length = 8000;
|
||||
length = 2000;
|
||||
unit = 1e-3;
|
||||
a = 1000;
|
||||
width = a;
|
||||
b = 500;
|
||||
height = b;
|
||||
mesh_res = [10 10 20];
|
||||
mesh_res = [10 10 10];
|
||||
|
||||
%define mode
|
||||
m = 1;
|
||||
|
@ -18,16 +18,24 @@ n = 0;
|
|||
EPS0 = 8.85418781762e-12;
|
||||
MUE0 = 1.256637062e-6;
|
||||
C0 = 1/sqrt(EPS0*MUE0);
|
||||
Z0 = sqrt(MUE0/EPS0);
|
||||
|
||||
f0 = 1e9;
|
||||
freq = linspace(f0-f0/3,f0+f0/3,201);
|
||||
|
||||
k = 2*pi*f0/C0;
|
||||
k = 2*pi*freq/C0;
|
||||
kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2);
|
||||
fc = C0*kc/2/pi;
|
||||
beta = sqrt(k^2 - kc^2);
|
||||
beta = sqrt(k.^2 - kc^2);
|
||||
|
||||
func_Ex = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
|
||||
func_Ey = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
|
||||
ZL_a = k * Z0 ./ beta;
|
||||
|
||||
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
|
||||
func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
|
||||
|
||||
func_Hx = [num2str(m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
|
||||
func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
|
||||
|
||||
%% define and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
openEMS_opts = '';
|
||||
|
@ -35,6 +43,9 @@ openEMS_opts = '';
|
|||
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
||||
openEMS_opts = [openEMS_opts ' --engine=fastest'];
|
||||
|
||||
Settings = [];
|
||||
Settings.LogFile = 'openEMS.log';
|
||||
|
||||
Sim_Path = 'tmp';
|
||||
Sim_CSX = 'rect_wg.xml';
|
||||
|
||||
|
@ -46,7 +57,7 @@ mkdir(Sim_Path);
|
|||
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
FDTD = InitFDTD(50000,1e-5,'OverSampling',6);
|
||||
FDTD = SetGaussExcite(FDTD,f0,f0/3);
|
||||
BC = [0 0 0 0 2 2];
|
||||
BC = [0 0 0 0 0 3];
|
||||
FDTD = SetBoundaryCond(FDTD,BC);
|
||||
|
||||
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -57,26 +68,89 @@ mesh.z = 0 : mesh_res(3) : length;
|
|||
CSX = DefineRectGrid(CSX, unit,mesh);
|
||||
|
||||
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
start=[0 0 mesh.z(3) ];
|
||||
stop =[width height mesh.z(3) ];
|
||||
start=[0 0 mesh.z(1) ];
|
||||
stop =[width height mesh.z(1) ];
|
||||
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
|
||||
weight{1} = func_Ex;
|
||||
weight{2} = func_Ey;
|
||||
weight{3} = 0;
|
||||
CSX = SetExcitationWeight(CSX,'excite',weight);
|
||||
CSX = AddBox(CSX,'excite',0 ,start,stop);
|
||||
|
||||
%% voltage and current definitions using the mode matching probes %%%%%%%%%
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(15)];
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(15)];
|
||||
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
|
||||
CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
|
||||
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
|
||||
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
||||
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(end-15)];
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(end-15)];
|
||||
CSX = AddProbe(CSX, 'ut2', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
|
||||
CSX = AddBox(CSX, 'ut2', 0 ,start,stop);
|
||||
CSX = AddProbe(CSX,'it2', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
|
||||
CSX = AddBox(CSX,'it2', 0 ,start,stop);
|
||||
|
||||
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
CSX = AddDump(CSX,'Et','FileType',0,'SubSampling','4,4,1');
|
||||
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,2');
|
||||
start = [mesh.x(1) , height/2 , mesh.z(1)];
|
||||
stop = [mesh.x(end) , height/2 , mesh.z(end)];
|
||||
CSX = AddBox(CSX,'Et',0 , start,stop);
|
||||
|
||||
% CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,4');
|
||||
% CSX = AddBox(CSX,'Ht',0,start,stop);
|
||||
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,2');
|
||||
CSX = AddBox(CSX,'Ht',0,start,stop);
|
||||
|
||||
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||||
|
||||
RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts)
|
||||
RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts, Settings)
|
||||
|
||||
|
||||
%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq);
|
||||
I = ReadUI({'it1','it2'},[Sim_Path '/'],freq);
|
||||
Exc = ReadUI('et',Sim_Path,freq);
|
||||
|
||||
uf1 = U.FD{1}.val./Exc.FD{1}.val;
|
||||
uf2 = U.FD{2}.val./Exc.FD{1}.val;
|
||||
if1 = I.FD{1}.val./Exc.FD{1}.val;
|
||||
if2 = I.FD{2}.val./Exc.FD{1}.val;
|
||||
|
||||
uf1_inc = 0.5 * ( uf1 + if1 .* ZL_a );
|
||||
if1_inc = 0.5 * ( if1 + uf1 ./ ZL_a );
|
||||
uf2_inc = 0.5 * ( uf2 + if2 .* ZL_a );
|
||||
if2_inc = 0.5 * ( if2 + uf2 ./ ZL_a );
|
||||
|
||||
uf1_ref = uf1 - uf1_inc;
|
||||
if1_ref = if1 - if1_inc;
|
||||
uf2_ref = uf2 - uf2_inc;
|
||||
if2_ref = if2 - if2_inc;
|
||||
|
||||
%% plot s-parameter
|
||||
figure
|
||||
s11 = uf1_ref./uf1_inc;
|
||||
s21 = uf2_inc./uf1_inc;
|
||||
plot(freq,20*log10(abs(s11)),'Linewidth',2);
|
||||
xlim([freq(1) freq(end)]);
|
||||
% ylim([-40 5]);
|
||||
grid on;
|
||||
hold on;
|
||||
plot(freq,20*log10(abs(s21)),'r','Linewidth',2);
|
||||
legend('s11','s21','Location','SouthEast');
|
||||
ylabel('s-para (dB)');
|
||||
xlabel('freq (Hz)');
|
||||
|
||||
%% compare analytic and numerical wave-impedance
|
||||
ZL = uf1./if1;
|
||||
figure()
|
||||
plot(freq,real(ZL),'Linewidth',2);
|
||||
hold on;
|
||||
grid on;
|
||||
plot(freq,imag(ZL),'r--','Linewidth',2);
|
||||
plot(freq,ZL_a,'g-.','Linewidth',2);
|
||||
ylabel('ZL (\Omega)');
|
||||
xlabel('freq (Hz)');
|
||||
xlim([freq(1) freq(end)]);
|
||||
legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');
|
||||
|
||||
|
|
Loading…
Reference in New Issue