function directional_coupler % % EXAMPLE / microstrip / directional_coupler % % Stacked directional coupler in microstrip technology. % % This example demonstrates: % - simple microstrip geometry % - S-parameter calculation using the ypar-method % - display of coupler parameters % - display of S11 (smith chart) % % % Tested with % - Matlab 2010b % - Octave 3.3.54 % - openEMS v0.0.17 % % (C) 2010 Sebastian Held clear close all clc % sim settings showStructure = 1; runSimulation = 1; for n=1:4 if n > 1, showStructure = 0; end ports{n} = sim( n, showStructure, runSimulation ); end postprocess( ports ); function ports = sim( simnr, showStructure, runSimulation ) physical_constants % setup the simulation drawingunit = 1e-6; % specify everything in um Sim_Path = ['tmp' int2str(simnr)]; Sim_CSX = 'tmp.xml'; f_max = 100e6; lambda = c0/f_max; % specify the coupler pcb1.w = 147000; pcb1.h = 54500; pcb1.t = 1524; pcb1.epr = 3; msl1.w = 135000; msl1.h = 2800; pcb2.w = 107000; pcb2.h = 14000; pcb2.t = 1524; pcb2.epr = 3; msl2.w = 95000; msl2.h = 4000; CSX = InitCSX(); % create the mesh mesh.x = [-pcb1.w/2 pcb1.w/2 -pcb2.w/2 pcb2.w/2 -msl1.w/2 msl1.w/2 -msl2.w/2 msl2.w/2]; mesh.x = [mesh.x linspace(-msl2.w/2,-msl2.w/2+msl2.h, 5) linspace(msl2.w/2,msl2.w/2-msl2.h, 5)]; mesh.y = [-pcb1.h/2 pcb1.h/2 -pcb2.h/2 pcb2.h/2 -msl1.h/2 msl1.h/2 -msl2.h/2 msl2.h/2]; mesh.z = [linspace(0,pcb1.t,5) linspace(pcb1.t,pcb1.t+pcb2.t,5)]; mesh.z = [mesh.z mesh.z(end)+10*(mesh.z(end)-mesh.z(1))]; % add space above pcb res = lambda/sqrt(max([pcb1.epr,pcb2.epr])) / 20 / drawingunit; mesh.x = SmoothMeshLines2(mesh.x,res); mesh.y = SmoothMeshLines2(mesh.y,res); mesh.z = SmoothMeshLines2(mesh.z,res); mesh = AddPML( mesh, [8 8 8 8 8 8] ); % add space for PML CSX = DefineRectGrid( CSX, drawingunit, mesh ); %% create the structure % microstrip CSX = AddMetal( CSX, 'PEC' ); start = [-msl1.w/2, -msl1.h/2, pcb1.t]; stop = [ msl1.w/2, msl1.h/2, pcb1.t]; priority = 100; % the geometric priority is set to 100 CSX = AddBox( CSX, 'PEC', priority, start, stop ); % ground plane CSX = AddMetal( CSX, 'PEC_ground' ); start = [-pcb1.w/2, -pcb1.h/2, 0]; stop = [ pcb1.w/2, pcb1.h/2, 0]; CSX = AddBox( CSX, 'PEC_ground', priority, start, stop ); % substrate 1 start = [-pcb1.w/2, -pcb1.h/2, 0]; stop = [ pcb1.w/2, pcb1.h/2, pcb1.t]; priority = 10; CSX = AddMaterial( CSX, 'substrate1' ); CSX = SetMaterialProperty( CSX, 'substrate1', 'Epsilon', pcb1.epr ); CSX = AddBox( CSX, 'substrate1', priority, start, stop ); % substrate 2 start = [-pcb2.w/2, -pcb2.h/2, pcb1.t]; stop = [ pcb2.w/2, pcb2.h/2, pcb1.t+pcb2.t]; priority = 10; CSX = AddMaterial( CSX, 'substrate2' ); CSX = SetMaterialProperty( CSX, 'substrate2', 'Epsilon', pcb2.epr ); CSX = AddBox( CSX, 'substrate2', priority, start, stop ); % stripline start = [-msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t]; stop = [ msl2.w/2, msl2.h/2, pcb1.t+pcb2.t]; priority = 100; CSX = AddBox( CSX, 'PEC', priority, start, stop ); % connections start = [-msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t]; stop = [-msl2.w/2+msl2.h, -pcb2.h/2, pcb1.t+pcb2.t]; priority = 100; CSX = AddBox( CSX, 'PEC', priority, start, stop ); start = [ msl2.w/2, -msl2.h/2, pcb1.t+pcb2.t]; stop = [ msl2.w/2-msl2.h, -pcb2.h/2, pcb1.t+pcb2.t]; priority = 100; CSX = AddBox( CSX, 'PEC', priority, start, stop ); %% ports % this project needs 4 simulations for n=1:4 portexcite{n} = []; end portexcite{simnr} = 'excite'; % port 1: input port start = [-msl1.w/2, 0, pcb1.t]; stop = [-msl1.w/2, 0, 0]; [CSX ports{1}] = AddCurvePort( CSX, 1, 50, start, stop, portexcite{1} ); % port 2: output port start = [msl1.w/2, 0, pcb1.t]; stop = [msl1.w/2, 0, 0]; [CSX ports{2}] = AddCurvePort( CSX, 2, 50, start, stop, portexcite{2} ); % port 3: coupled port start = [-msl2.w/2+msl2.h/2, -pcb2.h/2, pcb1.t+pcb2.t]; stop = [-msl2.w/2+msl2.h/2, -pcb2.h/2, 0]; [CSX ports{3}] = AddCurvePort( CSX, 3, 50, start, stop, portexcite{3} ); % port 4: isolated port start = [msl2.w/2-msl2.h/2, -pcb2.h/2, pcb1.t+pcb2.t]; stop = [msl2.w/2-msl2.h/2, -pcb2.h/2, 0]; [CSX ports{4}] = AddCurvePort( CSX, 4, 50, start, stop, portexcite{4} ); %% setup FDTD parameters & excitation function max_timesteps = 50000; min_decrement = 1e-6; FDTD = InitFDTD( max_timesteps, min_decrement ); FDTD = SetGaussExcite( FDTD, 0, f_max ); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % faster FDTD = SetBoundaryCond( FDTD, BC ); %% Write openEMS compatible xml-file if runSimulation [~,~,~] = rmdir(Sim_Path,'s'); end [~,~,~] = mkdir(Sim_Path); WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); if showStructure CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); end %% run openEMS openEMS_opts = ''; openEMS_opts = [openEMS_opts ' --engine=fastest']; % openEMS_opts = [openEMS_opts ' --debug-material']; % openEMS_opts = [openEMS_opts ' --debug-boxes']; if runSimulation RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts ); end function postprocess( ports ) f = linspace( 0, 100e6, 201 ); Y = calc_ypar( f, ports{1}, 'tmp' ); R = 50; S = y2s(Y,R); % insertion loss IL_dB = -20 * log10(abs(squeeze(S(2,1,:)))); % coupling factor CF_dB = -20 * log10(abs(squeeze(S(3,1,:)))); % isolation I_dB = -20 * log10(abs(squeeze(S(4,1,:)))); % directivity D_dB = -20 * log10(abs(squeeze(S(4,1,:) ./ S(3,1,:)))); figure plot( f, [IL_dB CF_dB I_dB D_dB] ); legend( {'insertion loss','coupling factor','isolation','directivity'} ); title( ['performance of the coupler for a termination resistance of R=' num2str(R)] ); grid on smithchart S11 = squeeze(S(1,1,:)); plot( real(S11), imag(S11) ); legend( 'S_{11}' ); title( ['performance of the coupler for a termination resistance of R=' num2str(R)] ); axis( [-1 1 -1 1] ); function smithchart % smith chart figure if exist( 'smith', 'file' ) % smith chart % www.ece.rutgers.edu/~orfanidi/ewa % or cmt toolbox from git.ate.uni-duisburg.de smith else % poor man smith chart color = [.6 .6 .6]; h = plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', color ); hg = hggroup; set( h,'Parent',hg ); hold on plot( hg, 0.25+0.75*sin(0:0.01:2*pi), 0.75*cos(0:0.01:2*pi), 'Color', color ); plot( hg, 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', color ); plot( hg, 0.75+0.25*sin(0:0.01:2*pi), 0.25*cos(0:0.01:2*pi), 'Color', color ); plot( hg, [-1 1], [0 0], 'Color', color ); axis equal axis off end