/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "engine_ext_mur_abc.h"
#include "operator_ext_mur_abc.h"
#include "engine.h"
#include "tools/array_ops.h"
Engine_Ext_Mur_ABC::Engine_Ext_Mur_ABC(Operator_Ext_Mur_ABC* op_ext) : Engine_Extension(op_ext)
{
m_Op_mur = op_ext;
m_numLines[0] = m_Op_mur->m_numLines[0];
m_numLines[1] = m_Op_mur->m_numLines[1];
m_ny = m_Op_mur->m_ny;
m_nyP = m_Op_mur->m_nyP;
m_nyPP = m_Op_mur->m_nyPP;
m_LineNr = m_Op_mur->m_LineNr;
m_LineNr_Shift = m_Op_mur->m_LineNr_Shift;
m_Mur_Coeff = m_Op_mur->m_Mur_Coeff;
m_volt_nyP = Create2DArray(m_numLines);
m_volt_nyPP = Create2DArray(m_numLines);
//find if some excitation is on this mur-abc and find the max length of this excite, so that the abc can start after the excitation is done...
int maxDelay=-1;
for (unsigned int n=0;nm_Op->E_Exc_Count;++n)
{
if ( ((m_Op_mur->m_Op->E_Exc_dir[n]==m_nyP) || (m_Op_mur->m_Op->E_Exc_dir[n]==m_nyPP)) && (m_Op_mur->m_Op->E_Exc_index[m_ny][n]==m_LineNr) )
{
if ((int)m_Op_mur->m_Op->E_Exc_delay[n]>maxDelay)
maxDelay = (int)m_Op_mur->m_Op->E_Exc_delay[n];
}
}
m_start_TS = 0;
if (maxDelay>=0)
{
m_start_TS = maxDelay + m_Op_mur->m_Op->ExciteLength + 10; //give it some extra timesteps, for the excitation to travel at least one cell away
cerr << "Engine_Ext_Mur_ABC::Engine_Ext_Mur_ABC: Warning: Excitation inside the Mur-ABC #" << m_ny << "-" << (int)(m_LineNr>0) << " found!!!! Mur-ABC will be switched on after excitation is done at " << m_start_TS << " timesteps!!! " << endl;
}
}
Engine_Ext_Mur_ABC::~Engine_Ext_Mur_ABC()
{
Delete2DArray(m_volt_nyP,m_numLines);
m_volt_nyP = NULL;
Delete2DArray(m_volt_nyPP,m_numLines);
m_volt_nyPP = NULL;
}
void Engine_Ext_Mur_ABC::DoPreVoltageUpdates()
{
if (IsActive()==false) return;
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
unsigned int pos_shift[] = {0,0,0};
pos[m_ny] = m_LineNr;
pos_shift[m_ny] = m_LineNr_Shift;
for (pos[m_nyP]=0;pos[m_nyP]GetVolt(m_nyP,pos_shift) - m_Mur_Coeff * m_Eng->GetVolt(m_nyP,pos);
m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]] = m_Eng->GetVolt(m_nyPP,pos_shift) - m_Mur_Coeff * m_Eng->GetVolt(m_nyPP,pos);
}
}
}
void Engine_Ext_Mur_ABC::DoPostVoltageUpdates()
{
if (IsActive()==false) return;
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
unsigned int pos_shift[] = {0,0,0};
pos[m_ny] = m_LineNr;
pos_shift[m_ny] = m_LineNr_Shift;
for (pos[m_nyP]=0;pos[m_nyP]GetVolt(m_nyP,pos_shift);
m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]] += m_Mur_Coeff * m_Eng->GetVolt(m_nyPP,pos_shift);
}
}
}
void Engine_Ext_Mur_ABC::Apply2Voltages()
{
if (IsActive()==false) return;
if (m_Eng==NULL) return;
if (m_Mur_Coeff==0) return;
unsigned int pos[] = {0,0,0};
pos[m_ny] = m_LineNr;
for (pos[m_nyP]=0;pos[m_nyP]GetVolt(m_nyP,pos) = m_volt_nyP[pos[m_nyP]][pos[m_nyPP]];
m_Eng->GetVolt(m_nyPP,pos) = m_volt_nyPP[pos[m_nyP]][pos[m_nyPP]];
}
}
}