close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% abs_length = 500; length = 10000; unit = 1e-3; rad = 300; mesh_max = 15; N_alpha = ceil(rad * pi / mesh_max) * 2; mesh_res = [mesh_max 2*pi/N_alpha mesh_max]; do_Half_Waveguide = 1; EPS0 = 8.85418781762e-12; MUE0 = 1.256637062e-6; C0 = 1/sqrt(EPS0*MUE0); f0 = 400e6; p11 = 1.841; kc = p11 / rad /unit; k = 2*pi*f0/C0; fc = C0*kc/2/pi; beta = sqrt(k^2 - kc^2); kc = kc*unit; func_Er = [ num2str(-1/kc^2,15) '/rho*cos(a)*j1(' num2str(kc,15) '*rho)']; func_Ea = [ num2str(1/kc,15) '*sin(a)*0.5*(j0(' num2str(kc,15) '*rho)-jn(2,' num2str(kc,15) '*rho))']; %% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% openEMS_opts = ''; % openEMS_opts = [openEMS_opts ' --disable-dumps']; % openEMS_opts = [openEMS_opts ' --debug-material']; % openEMS_opts = [openEMS_opts ' --debug-operator']; % openEMS_opts = [openEMS_opts ' --engine=multithreaded']; if (do_Half_Waveguide) Sim_Path = 'tmp_half_CWG_CC'; else Sim_Path = 'tmp_full_CWG_CC'; end Sim_CSX = 'Circ_WG_CC.xml'; mkdir(Sim_Path); %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10); % T = 1/f0; % FDTD = SetCustomExcite(FDTD,f0,[ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]); FDTD = SetSinusExcite(FDTD,f0); BC = [0 0 0 0 0 0]; FDTD = SetBoundaryCond(FDTD,BC); %% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); mesh.x = 0:mesh_res(1):rad; if (do_Half_Waveguide) mesh.y = linspace(-pi/2,pi/2,N_alpha/2); else mesh.y = linspace(-pi,pi,N_alpha)+pi/2; end y_delta = mesh.y(2) - mesh.y(1); mesh.z = 0 : mesh_res(3) : length; CSX = DefineRectGrid(CSX, 1e-3,mesh); %% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start = [0 mesh.y(1)-y_delta length-abs_length]; stop = [rad*1.2 mesh.y(end)+y_delta length]; finalKappa = 0.3/abs_length^4; finalSigma = finalKappa*MUE0/EPS0; CSX = AddMaterial(CSX,'pml'); CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa); CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma); CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']); CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']); CSX = AddBox(CSX,'pml',0 ,start,stop); %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddExcitation(CSX,'excite',0,[1 1 0]); weight{1} = func_Er; weight{2} = func_Ea; weight{3} = 0; CSX = SetExcitationWeight(CSX, 'excite', weight ); start(3)=-.5; stop(3)=0.5; CSX = AddBox(CSX,'excite', 5 ,start,stop); %% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddDump(CSX,'Et','FileType',1,'DumpMode',0,'SubSampling','1,1,5'); start = [mesh.x(1) , mesh.y(1)-y_delta , 0]; stop = [mesh.x(end) , mesh.y(end)+y_delta , length]; CSX = AddBox(CSX,'Et',0 , start,stop); CSX = AddDump(CSX,'Ht','FileType',1,'DumpType',1,'DumpMode',0,'SubSampling','1,1,5'); CSX = AddBox(CSX,'Ht',0 , start,stop); CSX = AddDump(CSX,'Et_rz_','FileType',0,'DumpMode',2,'SubSampling','1,1,5'); start = [mesh.x(1) , 0 , 0]; stop = [mesh.x(end) , 0 , length]; CSX = AddBox(CSX,'Et_rz_',0 , start,stop); %% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddProbe(CSX,'ut_exc',0); start = [ 0 0 0 ];stop = [ rad 0 0 ]; CSX = AddBox(CSX,'ut_exc', 0 ,start,stop); CSX = AddProbe(CSX,'ut_1',0); start = [ 0 0 length/2 ];stop = [ rad 0 length/2 ]; CSX = AddBox(CSX,'ut_1', 0 ,start,stop); %% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); %% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% savePath = pwd(); cd(Sim_Path); %cd to working dir args = [Sim_CSX ' ' openEMS_opts]; invoke_openEMS(args); cd(savePath); %% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UI = ReadUI('ut_1',[Sim_Path '/']); plot(UI.TD{1}.t,UI.TD{1}.val); grid on; file = [Sim_Path '/Et.h5']; z_planes = 1; timestep = 10; for z =z_planes figure if exist(file,'file') mesh = ReadHDF5Mesh(file); fields = ReadHDF5FieldData(file); [ALPHA RHO] = meshgrid(double(mesh.lines{1}),double(mesh.lines{2})); X = RHO.*cos(ALPHA); Y = RHO.*sin(ALPHA); Er = double( fields.values{timestep}(:,:,z,1) ); Ea = double( fields.values{timestep}(:,:,z,2) ); Ez = double( fields.values{timestep}(:,:,z,3) ); Ex = Er.*cos(ALPHA) - Ea.*sin(ALPHA); Ey = Er.*sin(ALPHA) + Ea.*cos(ALPHA); quiver(X,Y,Ex,Ey) axis equal title(['z : ' num2str(mesh.lines{2}(z)) ' ts: ' int2str(n)] ); Ex(10,5) pause(1) end end