% % Tutorials / bi-quad antenna % % Tested with % - Octave 3.8.1 % - openEMS v0.0.32 % % (C) 2011-2014 Thorsten Liebig close all clear clc %% setup the simulation physical_constants; unit = 1e-3; % all length in mm quad_size = 110; port_length = 10; quad_mesh = 5; Feed_R = 75; % size of the simulation box SimBox = [800 800 400]; % frequency range of interest f_start = 400e6; f_stop = 1000e6; % frequency of interest f0 = 700e6; freq = linspace(f_start,f_stop,201); %% setup FDTD parameter & excitation function FDTD = InitFDTD( 'endCriteria', 1e-4 ); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions FDTD = SetBoundaryCond( FDTD, BC ); %% setup CSXCAD geometry & mesh CSX = InitCSX(); %create fixed lines for the antenna outline and port mesh.x = [-quad_size*sqrt(2) -quad_size/sqrt(2) 0 quad_size/sqrt(2) quad_size*sqrt(2)]; mesh.y = [-quad_size/sqrt(2) -port_length/2 0 port_length/2 quad_size/sqrt(2)]; mesh.z = [0]; mesh = SmoothMesh(mesh, quad_mesh, 1.3); % add air box mesh.x = [mesh.x -SimBox(1)/2 SimBox(1)/2]; mesh.y = [mesh.y -SimBox(2)/2 SimBox(2)/2]; mesh.z = [-SimBox(3)/2 0 SimBox(3)/2]; max_res = c0 / (f_stop) / unit / 20; % cell size: lambda/20 mesh = SmoothMesh(mesh, max_res, 1.4); CSX = DefineRectGrid( CSX, unit, mesh ); %% create bi-quad points(1,1) = 0; points(2,1) = port_length/2; points(3,1) = 0; points(1,end+1) = quad_size/sqrt(2); points(2,end) = quad_size/sqrt(2); points(1,end+1) = quad_size*sqrt(2); points(2,end) = 0; points(1,end+1) = quad_size/sqrt(2); points(2,end) = -quad_size/sqrt(2); points(1,end+1) = 0; points(2,end) = -port_length/2; points(1,end+1) = -quad_size/sqrt(2); points(2,end) = -quad_size/sqrt(2); points(1,end+1) = -quad_size*sqrt(2); points(2,end) = 0; points(1,end+1) = -quad_size/sqrt(2); points(2,end) = quad_size/sqrt(2); points(1,end+1) = 0; points(2,end) = port_length/2; % create a thin metal wire... CSX = AddMetal(CSX,'metal'); %create PEC with propName 'metal' CSX = AddCurve(CSX,'metal',10, points); %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start = [0 -port_length/2 0]; stop = [0 port_length/2 0]; [CSX port] = AddLumpedPort(CSX,10,0,Feed_R,start,stop,[0 1 0], true); %% nf2ff calc start = [mesh.x(9) mesh.y(9) mesh.z(9)]; stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)]; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop); %% prepare simulation folder Sim_Path = 'tmp'; Sim_CSX = 'bi_quad_ant.xml'; [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder %% write openEMS compatible xml-file WriteOpenEMS([Sim_Path '/' Sim_CSX], FDTD, CSX); %% show the structure CSXGeomPlot([Sim_Path '/' Sim_CSX]); %% run openEMS RunOpenEMS(Sim_Path, Sim_CSX); %% postprocessing & do the plots port = calcPort(port, Sim_Path, freq); s11 = port.uf.ref ./ port.uf.inc; % plot reflection coefficient S11 figure plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); ylim([-30 0]); grid on title( 'reflection coefficient S_{11}' ); xlabel( 'frequency f / GHz' ); ylabel( 'reflection coefficient |S_{11}|' ); %% calculate 3D far field pattern phiRange = -180:2.5:180; thetaRange = 0:2.5:180; nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180); disp( ['directivity: Dmax = ' num2str(10*log10(nf2ff.Dmax)) ' dBi'] ); % plot far-field pattern with Matlab figure plotFF3D(nf2ff, 'logscale', -20) %% disp( 'Dumping far-field pattern to vtk (use Paraview to visualize)...' ); DumpFF2VTK('Bi_Quad_Pattern.vtk', nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax, thetaRange, phiRange, 'scale', 0.05);