/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "engine.h"
#include "processfields.h"
#include "operator_cylinder.h"
#include "operator_extension.h"
#include "operator_ext_cylinder.h"
Operator_Cylinder* Operator_Cylinder::New(unsigned int numThreads)
{
cout << "Create cylindrical FDTD operator" << endl;
Operator_Cylinder* op = new Operator_Cylinder();
op->setNumThreads(numThreads);
op->Init();
return op;
}
Operator_Cylinder::Operator_Cylinder() : __OP_CYLINDER_BASE_CLASS__()
{
m_MeshType = ProcessFields::CYLINDRICAL_MESH;
}
Operator_Cylinder::~Operator_Cylinder()
{
__OP_CYLINDER_BASE_CLASS__::Reset();
}
void Operator_Cylinder::Init()
{
CC_closedAlpha = false;
CC_R0_included = false;
__OP_CYLINDER_BASE_CLASS__::Init();
}
void Operator_Cylinder::Reset()
{
__OP_CYLINDER_BASE_CLASS__::Reset();
}
void Operator_Cylinder::InitOperator()
{
__OP_CYLINDER_BASE_CLASS__::InitOperator();
}
inline unsigned int Operator_Cylinder::GetNumberOfLines(int ny) const
{
//this is necessary for a correct field processing... cylindrical engine has to reset this by adding +1
if (CC_closedAlpha && ny==1)
return numLines[1]-1;
return numLines[ny];
}
string Operator_Cylinder::GetDirName(int ny) const
{
if (ny==0) return "rho";
if (ny==1) return "alpha";
if (ny==2) return "z";
return "";
}
double Operator_Cylinder::GetMeshDelta(int n, const int* pos, bool dualMesh) const
{
double delta = __OP_CYLINDER_BASE_CLASS__::GetMeshDelta(n,pos,dualMesh);
if (delta==0) return delta;
if (n==1)
{
return delta * GetDiscLine(0,pos[0],dualMesh);
}
return delta;
}
double Operator_Cylinder::GetNodeArea(int ny, const int pos[3], bool dualMesh) const
{
if (ny==2)
{
double da = __OP_CYLINDER_BASE_CLASS__::GetMeshDelta(1,pos,dualMesh)/gridDelta;
double r1,r2;
if (!dualMesh)
{
r1 = (discLines[0][pos[0]] - fabs(MainOp->GetIndexDelta(0,pos[0]-1))/2.0)*gridDelta;
r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0] ))/2.0)*gridDelta;
}
else
{
r1 = discLines[0][pos[0]]*gridDelta;
r2 = (discLines[0][pos[0]] + fabs(MainOp->GetIndexDelta(0,pos[0])))*gridDelta;
}
if (r1<0)
return da * pow(r2,2);
return da/2* (pow(r2,2) - pow(r1,2));
}
return __OP_CYLINDER_BASE_CLASS__::GetNodeArea(ny,pos,dualMesh);
}
bool Operator_Cylinder::SetGeometryCSX(ContinuousStructure* geo)
{
if (__OP_CYLINDER_BASE_CLASS__::SetGeometryCSX(geo)==false) return false;
double minmaxA = fabs(discLines[1][numLines[1]-1]-discLines[1][0]);
if (fabs(minmaxA-2*PI) < (2*PI)/10/numLines[1]) //check minmaxA smaller then a tenth of average alpha-width
{
cout << "Operator_Cylinder::SetGeometryCSX: Alpha is a full 2*PI => closed Cylinder..." << endl;
CC_closedAlpha = true;
discLines[1][numLines[1]-1] = discLines[1][0] + 2*PI;
cerr << "Operator_Cylinder::SetGeometryCSX: Warning, not handling the disc-line width and material averaging correctly yet for a closed cylinder..." << endl;
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > (2*PI)/10/numLines[1])
{
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... deviation to large..." << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
exit(1);
}
if (MainOp->GetIndexDelta(1,0)-MainOp->GetIndexDelta(1,numLines[1]-2) > 0)
{
cerr << "Operator_Cylinder::SetGeometryCSX: first and last angle delta must be the same... auto correction of deviation: " << MainOp->GetIndexDelta(1,0) - MainOp->GetIndexDelta(1,numLines[1]-2) << endl;
discLines[1][numLines[1]-2] = discLines[1][numLines[1]-1]-MainOp->GetIndexDelta(1,0);
}
}
else if (minmaxA>2*PI)
{cerr << "Operator_Cylinder::SetGeometryCSX: Alpha Max-Min must not be larger than 2*PI!!!" << endl; Reset(); return false;}
else
{
CC_closedAlpha=false;
}
if (discLines[0][0]<0)
{cerr << "Operator_Cylinder::SetGeometryCSX: r<0 not allowed in Cylinder Coordinates!!!" << endl; Reset(); return false;}
else if (discLines[0][0]==0.0)
{
cout << "Operator_Cylinder::SetGeometryCSX: r=0 included..." << endl;
CC_R0_included= true; //also needed for correct ec-calculation
}
if (CC_closedAlpha || CC_R0_included)
this->AddExtension(new Operator_Ext_Cylinder(this));
return true;
}
void Operator_Cylinder::ApplyElectricBC(bool* dirs)
{
if (dirs==NULL) return;
if (CC_closedAlpha)
{
dirs[2]=0;dirs[3]=0; //no PEC in alpha directions...
}
if (CC_R0_included)
{
// E in alpha direction ( aka volt[1][x][y][z] ) is not defined for r==0 --> always zero...
unsigned int pos[3] = {0,0,0};
for (pos[1]=0;pos[1]GetIndexDelta(n,pos[n]);
double deltaP=MainOp->GetIndexDelta(nP,pos[nP]);
double deltaPP=MainOp->GetIndexDelta(nPP,pos[nPP]);
double delta_M=MainOp->GetIndexDelta(n,pos[n]-1);
double deltaP_M=MainOp->GetIndexDelta(nP,pos[nP]-1);
double deltaPP_M=MainOp->GetIndexDelta(nPP,pos[nPP]-1);
double geom_factor=0,A_n=0;
//******************************* epsilon,kappa averaging *****************************//
//shift up-right
shiftCoord[n] = coord[n]+delta*0.5;
shiftCoord[nP] = coord[nP]+deltaP*0.25;
shiftCoord[nPP] = coord[nPP]+deltaPP*0.25;
CSProperties* prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
switch (n)
{
case 0:
geom_factor = fabs((deltaPP*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP*deltaPP/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs((deltaPP/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[0] = mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
inEC[1] = mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
}
else
{
inEC[0] = 1*geom_factor*__EPS0__;
inEC[1] = 0;
}
//shift up-left
shiftCoord[n] = coord[n]+delta*0.5;
shiftCoord[nP] = coord[nP]-deltaP_M*0.25;
shiftCoord[nPP] = coord[nPP]+deltaPP*0.25;
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
switch (n)
{
case 0:
geom_factor = fabs((deltaPP*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP_M*deltaPP/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs((deltaPP/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
}
else
{
inEC[0] += 1*geom_factor*__EPS0__;
inEC[1] += 0;
}
//shift down-right
shiftCoord[n] = coord[n]+delta*0.5;
shiftCoord[nP] = coord[nP]+deltaP*0.25;
shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25;
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
switch (n)
{
case 0:
geom_factor = fabs((deltaPP_M*deltaP/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP*deltaPP_M/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0]+fabs(deltaP)/2.0,2.0) - pow(coord[0],2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
}
else
{
inEC[0] += 1*geom_factor*__EPS0__;
inEC[1] += 0;
}
//shift down-left
shiftCoord[n] = coord[n]+delta*0.5;
shiftCoord[nP] = coord[nP]-deltaP_M*0.25;
shiftCoord[nPP] = coord[nPP]-deltaPP_M*0.25;
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
switch (n)
{
case 0:
geom_factor = fabs((deltaPP_M*deltaP_M/delta)*(coord[0]+fabs(delta)/2))*0.25;
break;
case 1:
geom_factor = fabs(deltaP_M*deltaPP_M/(delta*coord[0]))*0.25;
break;
case 2:
geom_factor = fabs((deltaPP_M/delta) * (pow(coord[0],2.0) - pow(coord[0]-fabs(deltaP_M)/2.0,2.0)))*0.25;
break;
}
geom_factor*=gridDelta;
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[0] += mat->GetEpsilonWeighted(n,shiftCoord)*geom_factor*__EPS0__;
inEC[1] += mat->GetKappaWeighted(n,shiftCoord)*geom_factor;
}
else
{
inEC[0] += 1*geom_factor*__EPS0__;
inEC[1] += 0;
}
//******************************* mu,sigma averaging *****************************//
//shift down
shiftCoord[n] = coord[n]-delta_M*0.25;
shiftCoord[nP] = coord[nP]+deltaP*0.5;
shiftCoord[nPP] = coord[nPP]+deltaPP*0.5;
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
double delta_n = fabs(delta_M);
if (n==1)
{
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
}
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[2] = delta_n / mat->GetMueWeighted(n,shiftCoord);
if (mat->GetSigma(n))
inEC[3] = delta_n / mat->GetSigmaWeighted(n,shiftCoord);
else
inEC[3] = 0;
}
else
{
inEC[2] = delta_n;
inEC[3] = 0;
}
//shift up
shiftCoord[n] = coord[n]+delta*0.25;
shiftCoord[nP] = coord[nP]+deltaP*0.5;
shiftCoord[nPP] = coord[nPP]+deltaPP*0.5;
prop = CSX->GetPropertyByCoordPriority(shiftCoord,CSProperties::MATERIAL);
delta_n = fabs(delta);
if (n==1)
{
delta_n = delta_n * fabs(coord[0]+0.5*fabs(deltaPP)); //multiply delta-angle by radius
}
if (prop)
{
CSPropMaterial* mat = prop->ToMaterial();
inEC[2] += mat->GetMue(n)*delta_n;
if (mat->GetSigmaWeighted(n,shiftCoord))
inEC[3] += delta_n/mat->GetSigmaWeighted(n,shiftCoord);
else
inEC[3] = 0;
}
else
{
inEC[2] += 1*delta_n;
inEC[3] = 0;
}
A_n = fabs(deltaP*deltaPP);
if (n==0) //x-direction n==0 -> r; nP==1 -> alpha; nPP==2 -> z
{
A_n = A_n * coord[0];
}
if (n==2) //z-direction n==2 -> z; nP==0 -> r; nPP==1 -> alpha
{
A_n = fabs(deltaPP) * (pow(coord[0]+fabs(deltaP),2.0) - pow(coord[0],2.0))*0.5;
}
inEC[2] = gridDelta * A_n * 2 * __MUE0__ / inEC[2];
if (inEC[3]) inEC[3]=gridDelta * A_n * 2 / inEC[3];
// if ((n==1) && (pos[1]==0) && (pos[2]==0))
// cerr << inEC[2]/(coord[0]) << endl;
// cerr << n << " -> " << pos[0] << " " << pos[1] << " " << pos[2] << " " << inEC[2] << endl;
return true;
}
bool Operator_Cylinder::Calc_EffMatPos(int n, const unsigned int* pos, double* inMat) const
{
__OP_CYLINDER_BASE_CLASS__::Calc_EffMatPos(n, pos, inMat);
// H_rho is not defined at position r==0
if (CC_R0_included && (n==0) && (pos[0]==0))
{
inMat[2] = 0;
inMat[3] = 0;
}
// E_alpha is not defined at position r==0
if (CC_R0_included && (n==1) && (pos[0]==0))
{
inMat[0]=0;
inMat[1]=0;
}
return true;
}
void Operator_Cylinder::AddExtension(Operator_Extension* op_ext)
{
if (op_ext->IsCylinderCoordsSave())
m_Op_exts.push_back(op_ext);
else
cerr << "Operator_Cylinder::AddExtension: Warning: Operator extension \"" << op_ext->GetExtensionName() << "\" is not compatible with cylinder-coords!! skipping...!" << endl;
}
double Operator_Cylinder::CalcTimestep()
{
return CalcTimestep_Var1();
}