% Tutorial on time delay and signal integrity for radar % and UWB applications % % Tested with % - Octave 4.0 % - openEMS v0.0.35 % % Author: Georg Michel, 2016 clear; close all; physical_constants; % --- start of configuration section --- % In radar and ultrawideband applications it is important to know the % delay and fidelity of RF pulses. The delay is the retardation of the % signal from the source to the phase center of the antenna. It is % composed out of linear delay, dispersion and minimum-phase % delay. Dispersion due to waveguides or frequency-dependent % permittivity and minimum-phase delay due to resonances will degrade % the fidelity which is the normalized similarity between excitation and % radiated signal. In this tutorial you can examine the performance of a % simple ultrawideband (UWB) monopole. The delay and fidelity of this % antenna are calculated and plotted. You can compare these properties % in different channels. % % The Gaussian excitation is set to the same 3dB bandwidth as the % channels of the IEEE 802.15.4 UWB PHY. One exeption is channel4twice % which has the double bandwidth of channel 4. It can be seen that the % delay is larger and the fidelity is smaller in the vicinity of the % (undesired) resonances of the antenna. Note that for a real UWB system % the total delay and fidelity result from both the transmitting and % receiving antenna or twice the delay and the square of the fidelity % for monostatic radar. % % The resolution of the delay will depend on the 'Oversampling' % parameter to InitFDTD. See the description of DelayFidelity % % In the configuration section below you can uncomment the respective % parameter settings. As an exercise, you can examine how the permittivity % of the substrate influences gain, delay and fidelity. %suffix = "channel1"; %f_0 = 3.5e9; % center frequency of the channel %f_c = 0.25e9 / 0.3925; % 3dB bandwidth is 0.3925 times 20dB bandwidth for Gaussian excitation %suffix = "channel2"; %f_0 = 4.0e9; % center frequency of the channel %f_c = 0.25e9 / 0.3925; %suffix = "channel3"; %f_0 = 4.5e9; % center frequency of the channel %f_c = 0.25e9 / 0.3925; suffix = "channel4"; f_0 = 4.0e9; % center frequency of the channel f_c = 0.5e9 / 0.3925; %suffix = "channel5"; %f_0 = 6.5e9; % center frequency of the channel %f_c = 0.25e9 / 0.3925; %suffix = "channel7"; %f_0 = 6.5e9; % center frequency of the channel %f_c = 0.5e9 / 0.3925; %suffix = "channel4twice"; % this is just to demonstrate the degradation of the fidelity with increasing bandwidth %f_0 = 4.0e9; % center frequency of the channel %f_c = 1e9 / 0.3925; tilt = 45 * pi / 180; % polarization tilt angle against co-polarization (90DEG is cross polarized) % --- end of configuration section --- % path and filename setup Sim_Path = 'tmp'; Sim_CSX = 'uwb.xml'; % properties of the substrate substrate.epsR = 4; % FR4 substrate.height = 0.707; substrate.cells = 3; % thickness in cells % size of the monopole and the gap to the ground plane gap = 0.62; % 0.5 patchsize = 14; % we will use millimeters unit = 1e-3; % set the resolution for the finer structures, e.g. the antenna gap fineResolution = C0 / (f_0 + f_c) / sqrt(substrate.epsR) / unit / 40; % set the resolution for the coarser structures, e.g. the surrounding air coarseResolution = C0/(f_0 + f_c) / unit / 20; % initialize the CSX structure CSX = InitCSX(); % add the properties which are used to model the antenna CSX = AddMetal(CSX, 'Ground' ); CSX = AddMetal(CSX, 'Patch'); CSX = AddMetal(CSX, 'Line'); CSX = AddMaterial(CSX, 'Substrate' ); CSX = SetMaterialProperty(CSX, 'Substrate', 'Epsilon', substrate.epsR); % define the supstrate and sheet-like primitives for the properties CSX = AddBox(CSX, 'Substrate', 1, [-16, -16, -substrate.height], [16, 18, 0]); CSX = AddBox(CSX, 'Ground', 2, [-16, -16, -substrate.height], [16, 0, -substrate.height]); CSX = AddBox(CSX, 'Line', 2, [-1.15, -16, 0], [1.15, gap, 0]); CSX = AddBox(CSX, 'Patch', 2, [-patchsize/2, gap, 0], [patchsize/2, gap + patchsize, 0]); % setup a mesh mesh.x = []; mesh.y = []; % two mesh lines for the metal coatings of teh substrate mesh.z = linspace(-substrate.height, 0, substrate.cells +1); % find optimal mesh lines for the patch and ground, not yes the microstrip line mesh = DetectEdges(CSX, mesh, 'SetProperty',{'Patch', 'Ground'}, '2D_Metal_Edge_Res', fineResolution/2); %replace gap mesh lines which are too close by a single mesh line tooclose = find (diff(mesh.y) < fineResolution/4); if ~isempty(tooclose) mesh.y(tooclose) = (mesh.y(tooclose) + mesh.y(tooclose+1))/2; mesh.y(tooclose + 1) = []; endif % store the microstrip edges in a temporary variable meshline = DetectEdges(CSX, [], 'SetProperty', 'Line', '2D_Metal_Edge_Res', fineResolution/2); % as well as the edges of the substrate (without 1/3 - 2/3 rule) meshsubstrate = DetectEdges(CSX, [], 'SetProperty', 'Substrate'); % add only the x mesh lines of the microstrip mesh.x = [mesh.x meshline.x]; % and only the top of the substrate, the other edges are covered by the ground plane mesh.y = [mesh.y, meshsubstrate.y(end)]; % top of substrate % for now we have only the edges, now calculate mesh lines inbetween mesh = SmoothMesh(mesh, fineResolution); % add the outer boundary mesh.x = [mesh.x -60, 60]; mesh.y = [mesh.y, -60, 65]; mesh.z = [mesh.z, -46, 45]; % add coarse mesh lines for the free space mesh = SmoothMesh(mesh, coarseResolution); % define the grid CSX = DefineRectGrid( CSX, unit, mesh); % and the feeding port [CSX, port] = AddLumpedPort( CSX, 999, 1, 50, [-1.15, meshline.y(2), -substrate.height], [1.15, meshline.y(2), 0], [0 0 1], true); %setup a NF2FF box for the calculation of the far field start = [mesh.x(10) mesh.y(10) mesh.z(10)]; stop = [mesh.x(end-9) mesh.y(end-9) mesh.z(end-9)]; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop); % initialize the FDTD structure with excitation and open boundary conditions FDTD = InitFDTD( 'NrTs', 30000, 'EndCriteria', 1e-5, 'OverSampling', 20); FDTD = SetGaussExcite(FDTD, f_0, f_c ); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; FDTD = SetBoundaryCond(FDTD, BC ); % remove old data, show structure, calculate new data [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder % write the data to the working directory WriteOpenEMS([Sim_Path '/' Sim_CSX], FDTD, CSX); % show the geometry for checking CSXGeomPlot([Sim_Path '/' Sim_CSX]); % run the simulation RunOpenEMS( Sim_Path, Sim_CSX); % plot amplitude and phase of the reflection coefficient freq = linspace(f_0-f_c, f_0+f_c, 200); port = calcPort(port, Sim_Path, freq); s11 = port.uf.ref ./ port.uf.inc; s11phase = unwrap(arg(s11)); figure %("visible", "off"); % use this to plot only into files at the end of this script ax = plotyy( freq/1e6, 20*log10(abs(s11)), freq/1e6, s11phase); grid on title( ['reflection coefficient ', suffix, ' S_{11}']); xlabel( 'frequency f / MHz' ); ylabel( ax(1), 'reflection coefficient |S_{11}|' ); ylabel(ax(2), 'S_{11} phase (rad)'); % define an azimuthal trace around the monopole phi = [0] * pi / 180; theta = [-180:10:180] * pi / 180; % calculate the delay, the fidelity and the farfield [delay, fidelity, nf2ff] = DelayFidelity(nf2ff, port, Sim_Path, sin(tilt), cos(tilt), theta, phi, f_0, f_c, 'Mode', 1); %plot the gain at (close to) f_0 f_0_nearest_ind = nthargout(2, @min, abs(nf2ff.freq -f_0)); %turn directivity into gain nf2ff.Dmax(f_0_nearest_ind) *= nf2ff.Prad(f_0_nearest_ind) / calcPort(port, Sim_Path, nf2ff.freq(f_0_nearest_ind)).P_inc; figure %("visible", "off"); polarFF(nf2ff, 'xaxis', 'theta', 'freq_index', f_0_nearest_ind, 'logscale', [-4, 4]); title(["gain ", suffix, " / dBi"]); % We trick polarFF into plotting the delay in mm because % the axes of the vanilla polar plot can not be scaled. plotvar = delay * C0 * 1000; maxplot = 80; minplot = 30; nf2ff.Dmax(1) = 10^(max(plotvar)/10); nf2ff.E_norm{1} = 10.^(plotvar/20); figure %("visible", "off"); polarFF(nf2ff, 'xaxis', 'theta', 'logscale', [minplot, maxplot]); title(["delay ", suffix, " / mm"]); % The same for the fidelity in percent. plotvar = fidelity * 100; maxplot = 100; minplot = 98; nf2ff.Dmax(1) = 10^(max(plotvar)/10); nf2ff.E_norm{1} = 10.^(plotvar/20); figure %("visible", "off"); polarFF(nf2ff, 'xaxis', 'theta', 'logscale', [minplot, maxplot]); title(["fidelity ", suffix, " / %"]); % save the plots in order to compare them afer simulating the different channels print(1, ["s11_", suffix, ".png"]); print(2, ["farfield_", suffix, ".png"]); print(3, ["delay_mm_", suffix, ".png"]); print(4, ["fidelity_", suffix, ".png"]); return;