/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef OPERATOR_H
#define OPERATOR_H
#include "ContinuousStructure.h"
#include "tools/AdrOp.h"
#include "tools/constants.h"
#include "excitation.h"
class Operator_Extension;
class Engine;
class TiXmlElement;
//! Abstract base-class for the FDTD-operator
class Operator
{
friend class Engine;
friend class Operator_Ext_LorentzMaterial; //we need to find a way around this... friend class Operator_Extension only would be nice
friend class Operator_Ext_PML_SF_Plane;
public:
//! Create a new operator
static Operator* New();
virtual ~Operator();
virtual Engine* CreateEngine() const;
virtual bool SetGeometryCSX(ContinuousStructure* geo);
virtual ContinuousStructure* GetGeometryCSX() {return CSX;}
virtual int CalcECOperator();
//! Calculate the FDTD equivalent circuit parameter for the given position and direction ny. \sa Calc_EffMat_Pos
virtual bool Calc_ECPos(int ny, const unsigned int* pos, double* EC) const;
//! Calculate the effective/averaged material properties at the given position and direction ny.
virtual bool Calc_EffMatPos(int ny, const unsigned int* pos, double* EffMat) const;
virtual bool SetupExcitation(TiXmlElement* Excite, unsigned int maxTS) {return Exc->setupExcitation(Excite,maxTS);};
inline virtual FDTD_FLOAT& GetVV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vv[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetVI( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return vi[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetII( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return ii[n][x][y][z]; }
inline virtual FDTD_FLOAT& GetIV( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return iv[n][x][y][z]; }
virtual void SetBoundaryCondition(int* BCs) {for (int n=0;n<6;++n) m_BC[n]=BCs[n];}
virtual void ApplyElectricBC(bool* dirs); //applied by default to all boundaries
virtual void ApplyMagneticBC(bool* dirs);
//! Set a forced timestep to use by the operator
virtual void SetTimestep(double ts) {dT = ts;}
double GetTimestep() const {return dT;};
bool GetTimestepValid() const {return !m_InvaildTimestep;}
virtual double GetNumberCells() const;
//! Returns the number of lines as needed for post-processing etc. (for the engine, use GetOriginalNumLines())
virtual unsigned int GetNumberOfLines(int ny) const {return numLines[ny];}
//! Returns the number of lines as needed for the engine etc. (for post-processing etc, use GetOriginalNumLines())
virtual unsigned int GetOriginalNumLines(int ny) const {return numLines[ny];}
virtual void ShowStat() const;
virtual void ShowExtStat() const;
virtual void DumpOperator2File(string filename);
virtual void DumpMaterial2File(string filename);
virtual void DumpPEC2File( string filename );
//! Get the name for the given direction: 0 -> x, 1 -> y, 2 -> z
virtual string GetDirName(int ny) const;
virtual double GetGridDelta() const {return gridDelta;}
//! Get the mesh delta times the grid delta for a 3D position (unit is meter)
virtual double GetMeshDelta(int n, const int* pos, bool dualMesh=false) const;
//! Get the mesh delta times the grid delta for a 3D position (unit is meter)
virtual double GetMeshDelta(int n, const unsigned int* pos, bool dualMesh=false) const;
//! Get the disc line in \a n direction (in drawing units)
virtual double GetDiscLine(int n, int pos, bool dualMesh=false) const;
//! Get the disc line in \a n direction (in drawing units)
virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const;
//! Get the node width for a given direction \a n and a given mesh position \a pos
virtual double GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetNodeWidth(ny,(const int*)pos,dualMesh);}
//! Get the node width for a given direction \a n and a given mesh position \a pos
virtual double GetNodeWidth(int ny, const int pos[3], bool dualMesh = false) const {return GetMeshDelta(ny,pos,!dualMesh);}
//! Get the node area for a given direction \a n and a given mesh position \a pos
virtual double GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetNodeArea(ny,(const int*)pos,dualMesh);}
//! Get the node area for a given direction \a n and a given mesh position \a pos
virtual double GetNodeArea(int ny, const int pos[3], bool dualMesh = false) const;
//! Get the length of an FDTD edge (unit is meter).
virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetEdgeLength(ny,(const int*)pos,dualMesh);}
//! Get the length of an FDTD edge (unit is meter).
virtual double GetEdgeLength(int ny, const int pos[3], bool dualMesh = false) const {return GetMeshDelta(ny,pos,dualMesh);}
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos
/*!
This will return the area around an edge with a given direction, measured at the middle of the edge.
In a cartesian mesh this is equal to the NodeArea, may be different in other coordinate systems.
*/
virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const {return GetEdgeArea(ny,(const int*)pos,dualMesh);}
//! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos \sa GetEdgeArea
virtual double GetEdgeArea(int ny, const int pos[3], bool dualMesh = false) const {return GetNodeArea(ny,(const int*)pos,dualMesh);};
virtual bool SnapToMesh(double* coord, unsigned int* uicoord, bool lower=false, bool* inside=NULL);
virtual void AddExtension(Operator_Extension* op_ext);
virtual size_t GetNumberOfExtentions() const {return m_Op_exts.size();}
virtual Operator_Extension* GetExtension(size_t index) const {return m_Op_exts.at(index);}
protected:
//! use New() for creating a new Operator
Operator();
virtual void Init();
virtual void Reset();
virtual void InitOperator();
virtual void InitExcitation();
struct Grid_Path
{
vector posPath[3];
vector dir;
};
struct Grid_Path FindPath(double start[], double stop[]);
ContinuousStructure* CSX;
int m_BC[6];
//! Calculate the field excitations.
virtual bool CalcFieldExcitation();
unsigned int m_Nr_PEC[3]; //count PEC edges
virtual bool CalcPEC();
virtual void CalcPEC_Range(unsigned int startX, unsigned int stopX, unsigned int* counter); //internal to CalcPEC
virtual void CalcPEC_Curves(); //internal to CalcPEC
//Calc timestep only internal use
virtual double CalcTimestep();
double dT; //FDTD timestep!
double opt_dT;
bool m_InvaildTimestep;
string m_Used_TS_Name;
double CalcTimestep_Var1();
double CalcTimestep_Var3();
//! Calc operator at certain \a pos
virtual void Calc_ECOperatorPos(int n, unsigned int* pos);
//EC elements, internal only!
virtual void Init_EC();
virtual bool Calc_EC();
double* EC_C[3];
double* EC_G[3];
double* EC_L[3];
double* EC_R[3];
int m_MeshType;
unsigned int numLines[3];
double* discLines[3];
double gridDelta;
AdrOp* MainOp;
AdrOp* DualOp;
vector m_Op_exts;
// engine/post-proc needs access
public:
//EC operator
FDTD_FLOAT**** vv; //calc new voltage from old voltage
FDTD_FLOAT**** vi; //calc new voltage from old current
FDTD_FLOAT**** ii; //calc new current from old current
FDTD_FLOAT**** iv; //calc new current from old voltage
Excitation* Exc;
};
#endif // OPERATOR_H