/* * Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef OPERATOR_BASE_H #define OPERATOR_BASE_H #include "ContinuousStructure.h" #include "tools/global.h" #include "Common/processing.h" #include "string" typedef struct { vector posPath[3]; vector dir; } Grid_Path; //! Abstract base-class for a common operator class Operator_Base { public: virtual ~Operator_Base(); virtual bool SetGeometryCSX(ContinuousStructure* geo); virtual ContinuousStructure* GetGeometryCSX() const {return CSX;} //! Get the timestep used by this operator virtual double GetTimestep() const {return dT;} //! Get the number of cells or nodes defined by this operator virtual double GetNumberCells() const =0; //! Get the number of timesteps satisfying the nyquist condition (may depend on the excitation) virtual unsigned int GetNumberOfNyquistTimesteps() const =0; //! Returns the number of lines as needed for post-processing etc. virtual unsigned int GetNumberOfLines(int ny, bool full=false) const =0; //! Get the name for the given direction: 0 -> x, 1 -> y, 2 -> z virtual std::string GetDirName(int ny) const; //! Get the grid drawing unit in m virtual double GetGridDelta() const =0; //! Get the disc line in \a n direction (in drawing units) virtual double GetDiscLine(int n, unsigned int pos, bool dualMesh=false) const =0; //! Get the disc line delta in \a n direction (in drawing units) virtual double GetDiscDelta(int n, unsigned int pos, bool dualMesh=false) const =0; //! Get the node width for a given direction \a n and a given mesh position \a pos virtual double GetNodeWidth(int ny, const unsigned int pos[3], bool dualMesh = false) const =0; //! Get the node area for a given direction \a n and a given mesh position \a pos virtual double GetNodeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const =0; //! Get the length of an FDTD edge (unit is meter). virtual double GetEdgeLength(int ny, const unsigned int pos[3], bool dualMesh = false) const =0; //! Get the area around an edge for a given direction \a n and a given mesh posisition \a pos /*! This will return the area around an edge with a given direction, measured at the middle of the edge. In a cartesian mesh this is equal to the NodeArea, may be different in other coordinate systems. */ virtual double GetEdgeArea(int ny, const unsigned int pos[3], bool dualMesh = false) const =0; //! Get the volume of an FDTD cell virtual double GetCellVolume(const unsigned int pos[3], bool dualMesh = false) const =0; //! Snap the given coodinates to mesh indices, return box dimension virtual bool SnapToMesh(const double* coord, unsigned int* uicoord, bool dualMesh=false, bool fullMesh=false, bool* inside=NULL) const =0; //! Snap a given box to the operator mesh, uiStart will be always <= uiStop /*! \param[in] start the box-start coorindate \param[in] stop the box-stopt coorindate \param[out] uiStart the snapped box-start coorindate index \param[out] uiStop the snapped box-stop coorindate index \param[in] dualMesh snap to main or dual mesh (default is main mesh) \param[in] SnapMethod Snapping method, 0=snap to closest line, 1/(2)=snap such that given box is inside (outside) the snapped lines \return returns the box dimension or -1 if box is not inside the simulation domain */ virtual int SnapBox2Mesh(const double* start, const double* stop, unsigned int* uiStart, unsigned int* uiStop, bool dualMesh=false, bool fullMesh=false, int SnapMethod=0, bool* bStartIn=NULL, bool* bStopIn=NULL) const =0; //! Set the boundary conditions virtual void SetBoundaryCondition(int* BCs) {for (int n=0; n<6; ++n) m_BC[n]=BCs[n];} //! Set flags to store material data for post-processing virtual void SetMaterialStoreFlags(int type, bool val); //! Check storage flags and cleanup virtual void CleanupMaterialStorage() = 0; //! Get stored discrete material (if storage is enabled). virtual double GetDiscMaterial(int type, int ny, const unsigned int pos[3]) const = 0; //! Set the background material (default is vacuum) virtual void SetBackgroundMaterial(double epsR=0, double mueR=0, double kappa=0, double sigma=0); //! Get background rel. electric permittivity double GetBackgroundEpsR() const {return m_BG_epsR;} //! Set background rel. electric permittivity void SetBackgroundEpsR(double val); //! Get background rel. magnetic permeability double GetBackgroundMueR() const {return m_BG_mueR;} //! Set background rel. magnetic permeability void SetBackgroundMueR(double val); //! Get background electric conductivity double GetBackgroundKappa() const {return m_BG_kappa;} //! Set background electric conductivity void SetBackgroundKappa(double val); //! Get background magnetic conductivity (artificial) double GetBackgroundSigma() const {return m_BG_sigma;} //! Set background magnetic conductivity (artificial) void SetBackgroundSigma(double val); protected: Operator_Base(); ContinuousStructure* CSX; virtual void Init(); //! Cleanup data and reset void Delete(); virtual void Reset(); //! boundary conditions int m_BC[6]; //! The operator timestep double dT; //! bool flag array to store material data for post-processing bool m_StoreMaterial[4]; //! background materials double m_BG_epsR; double m_BG_mueR; double m_BG_kappa; double m_BG_sigma; CoordinateSystem m_MeshType; unsigned int numLines[3]; double* discLines[3]; double gridDelta; }; #endif // OPERATOR_BASE_H