% % EXAMPLE / microstrip / MSL2 % % This example shows how to use the MSL-port. % The MSL is excited at the center of the computational volume. The % boundary at xmin is an absorbing boundary (Mur) and at xmax an electric % wall. The reflection coefficient at this wall is S11 = -1. % Direction of propagation is x. % % This example demonstrates: % - simple microstrip geometry (made of PEC) % - MSL port % - MSL analysis % % % Tested with % - Matlab 2009b % - Octave 3.3.52 % - openEMS v0.0.14 % % (C) 2010 Sebastian Held close all clear clc %% switches postproc_only = 0; %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% physical_constants; unit = 1e-6; % specify everything in um MSL_length = 10000; MSL_width = 1000; substrate_thickness = 254; substrate_epr = 3.66; % mesh_res = [200 0 0]; %% prepare simulation folder Sim_Path = 'tmp'; Sim_CSX = 'msl2.xml'; if ~postproc_only [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder end %% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%% max_timesteps = 20000; min_decrement = 1e-6; f_max = 7e9; FDTD = InitFDTD( max_timesteps, min_decrement, 'OverSampling', 10 ); FDTD = SetGaussExcite( FDTD, f_max/2, f_max/2 ); BC = {'MUR' 'PEC' 'PEC' 'PEC' 'PEC' 'PMC'}; FDTD = SetBoundaryCond( FDTD, BC ); %% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); resolution = c0/(f_max*sqrt(substrate_epr))/unit /50; % resolution of lambda/50 mesh.x = SmoothMeshLines( [-MSL_length MSL_length], resolution ); mesh.y = SmoothMeshLines( [-4*MSL_width -MSL_width/2 MSL_width/2 4*MSL_width], resolution ); mesh.z = SmoothMeshLines( [linspace(0,substrate_thickness,5) 10*substrate_thickness], resolution ); CSX = DefineRectGrid( CSX, unit, mesh ); %% substrate CSX = AddMaterial( CSX, 'RO4350B' ); CSX = SetMaterialProperty( CSX, 'RO4350B', 'Epsilon', substrate_epr ); start = [mesh.x(1), mesh.y(1), 0]; stop = [mesh.x(end), mesh.y(end), substrate_thickness]; CSX = AddBox( CSX, 'RO4350B', 0, start, stop ); %% MSL port CSX = AddMetal( CSX, 'PEC' ); portstart = [ 0, -MSL_width/2, substrate_thickness]; portstop = [ MSL_length, MSL_width/2, 0]; [CSX,portstruct] = AddMSLPort( CSX, 1, 'PEC', portstart, portstop, [1 0 0], [0 0 1], [], 'excite' ); %% MSL start = [-MSL_length, -MSL_width/2, substrate_thickness]; stop = [ 0, MSL_width/2, substrate_thickness]; CSX = AddBox( CSX, 'PEC', 999, start, stop ); % priority needs to be higher than %% define dump boxes start = [mesh.x(1), mesh.y(1), substrate_thickness/2]; stop = [mesh.x(end), mesh.y(end), substrate_thickness/2]; CSX = AddDump( CSX, 'Et_', 'DumpType', 0,'DumpMode', 2 ); % cell interpolated CSX = AddBox( CSX, 'Et_', 0, start, stop ); CSX = AddDump( CSX, 'Ht_', 'DumpType', 1,'DumpMode', 2 ); % cell interpolated CSX = AddBox( CSX, 'Ht_', 0, start, stop ); %% write openEMS compatible xml-file WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); %% show the structure CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); %% run openEMS openEMS_opts = ''; openEMS_opts = [openEMS_opts ' --engine=fastest']; % openEMS_opts = [openEMS_opts ' --debug-material']; % openEMS_opts = [openEMS_opts ' --debug-boxes']; % openEMS_opts = [openEMS_opts ' --debug-PEC']; if ~postproc_only RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts ); end %% postprocess f = linspace( 1e6, f_max, 1601 ); U = ReadUI( {'port_ut1A','port_ut1B','et'}, 'tmp/', f ); I = ReadUI( {'port_it1A','port_it1B'}, 'tmp/', f ); % Z = (U.FD{1}.val+U.FD{2}.val)/2 ./ I.FD{1}.val; % plot( f*1e-9, [real(Z);imag(Z)],'Linewidth',2); % xlabel('frequency (GHz)'); % ylabel('impedance (Ohm)'); % grid on; % legend( {'real','imaginary'}, 'location', 'northwest' ) % title( 'line impedance (will fail in case of reflections!)' ); figure ax = plotyy( U.TD{1}.t/1e-6, [U.TD{1}.val;U.TD{2}.val], U.TD{3}.t/1e-6, U.TD{3}.val ); xlabel( 'time (us)' ); ylabel( 'amplitude (V)' ); grid on title( 'Time domain voltage probes and excitation signal' ); legend( {'ut1A','ut1B','excitation'} ); % now make the y-axis symmetric to y=0 (align zeros of y1 and y2) y1 = ylim(ax(1)); y2 = ylim(ax(2)); ylim( ax(1), [-max(abs(y1)) max(abs(y1))] ); ylim( ax(2), [-max(abs(y2)) max(abs(y2))] ); figure plot( I.TD{1}.t/1e-6, [I.TD{1}.val;I.TD{2}.val] ); xlabel( 'time (us)' ); ylabel( 'amplitude (A)' ); grid on title( 'Time domain current probes' ); legend( {'it1A','it1B'} ); % port analysis [S11,beta,ZL] = calcMSLPort( portstruct, Sim_Path, f ); % attention! the reflection coefficient S11 is normalized to ZL! figure plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', [.7 .7 .7] ); hold on plot( 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] ); plot( [-1 1], [0 0], 'Color', [.7 .7 .7] ); plot( S11, 'k' ); plot( real(S11(1)), imag(S11(1)), '*r' ); axis equal title( 'Reflection coefficient S11 at the measurement plane' ); figure plot( f/1e9, [real(S11);imag(S11)], 'Linewidth',2 ); legend( {'Re(S11)', 'Im(S11)'} ); ylabel( 'amplitude' ); xlabel( 'frequency (GHz)' ); title( 'Reflection coefficient S11 at the measurement plane' ); figure plotyy( f/1e9, 20*log10(abs(S11)), f/1e9, angle(S11)/pi*180 ); legend( {'|S11|', 'angle(S11)'} ); xlabel( 'frequency (GHz)' ); ylabel( '|S11| (dB)' ); title( 'Reflection coefficient S11 at the measurement plane' ); figure plot( f/1e9, [real(beta);imag(beta)], 'Linewidth',2 ); legend( 'Re(beta)', 'Im(beta)' ); ylabel( 'propagation constant beta (1/m)' ); xlabel( 'frequency (GHz)' ); title( 'Propagation constant of the MSL' ); figure plot( f/1e9, [real(ZL);imag(ZL)], 'Linewidth',2); xlabel('frequency (GHz)'); ylabel('impedance (Ohm)'); grid on; legend( {'real','imaginary'}, 'location', 'northeast' ) title( 'Characteristic line impedance ZL' ); % reference plane shift (to the end of the port) ref_shift = abs(portstop(1) - portstart(1)); [S11,beta,ZL] = calcMSLPort( portstruct, Sim_Path, f, ref_shift ); figure plotyy( f/1e9, 20*log10(abs(S11)), f/1e9, angle(S11)/pi*180 ); legend( {'abs(S11)', 'angle(S11)'} ); xlabel( 'frequency (GHz)' ); title( 'Reflection coefficient S11 at the reference plane (at the electric wall)' ); figure plot( sin(0:0.01:2*pi), cos(0:0.01:2*pi), 'Color', [.7 .7 .7] ); hold on plot( 0.5+0.5*sin(0:0.01:2*pi), 0.5*cos(0:0.01:2*pi), 'Color', [.7 .7 .7] ); plot( [-1 1], [0 0], 'Color', [.7 .7 .7] ); plot( S11, 'k' ); plot( real(S11(1)), imag(S11(1)), '*r' ); axis equal title( 'Reflection coefficient S11 at the reference plane (at the electric wall)' ); %% visualize electric and magnetic fields % you will find vtk dump files in the simulation folder (tmp/) % use paraview to visualize them