close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EPS0 = 8.85418781762e-12; MUE0 = 1.256637062e-6; C0 = 1/sqrt(EPS0*MUE0); Z0 = sqrt(MUE0/EPS0); f0 = 0.5e9; epsR = 1; kappa = 0; length = 3000; port_dist = 1500; rad_i = 100; rad_a = 230; max_mesh = 10; max_alpha = max_mesh; N_alpha = ceil(rad_a * 2*pi / max_alpha); mesh_res = [max_mesh 2*pi/N_alpha max_mesh]; %% define and openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% openEMS_opts = ''; openEMS_opts = [openEMS_opts ' --disable-dumps']; % openEMS_opts = [openEMS_opts ' --debug-operator']; % openEMS_opts = [openEMS_opts ' --debug-material']; Sim_Path = 'tmp'; Sim_CSX = 'coax.xml'; if (exist(Sim_Path,'dir')) rmdir(Sim_Path,'s'); end mkdir(Sim_Path); %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitCylindricalFDTD(1e5,1e-6,'OverSampling',10); FDTD = SetGaussExcite(FDTD,f0,f0); BC = [0 0 1 1 0 0]; FDTD = SetBoundaryCond(FDTD,BC); %% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); mesh.x = rad_i : mesh_res(1) : rad_a; mesh.y = linspace(0,2*pi,N_alpha); % mesh.y = mesh.y + mesh_res(2)/2; mesh.z = 0 : mesh_res(3) : length; CSX = DefineRectGrid(CSX, 1e-3,mesh); %% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% abs_length = 30*(mesh.z(2)-mesh.z(1)) finalKappa = 0.3; finalSigma = finalKappa*MUE0/EPS0/epsR; CSX = AddMaterial(CSX,'pml'); CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa+kappa,'Epsilon',epsR); CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma); CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)/' num2str(abs_length^4)]); CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)/' num2str(abs_length^4)]); start = [rad_i mesh.y(1) length-abs_length]; stop = [rad_a mesh.y(end) length]; CSX = AddBox(CSX,'pml',0 ,start,stop); %% material CSX = AddMaterial(CSX,'fill'); CSX = SetMaterialProperty(CSX,'fill','Epsilon',epsR,'Kappa',kappa); start = [mesh.x(1) mesh.y(1) 0]; stop = [mesh.x(end) mesh.y(end) length]; CSX = AddBox(CSX,'fill',0 ,start,stop); %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddExcitation(CSX,'excite',0,[1 0 0]); weight{1} = '1/rho'; weight{2} = 0; weight{3} = 0; CSX = SetExcitationWeight(CSX, 'excite', weight ); start = [rad_i mesh.y(1) 0]; stop = [rad_a mesh.y(end) 0]; CSX = AddBox(CSX,'excite',0 ,start,stop); %% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddDump(CSX,'Et_','DumpMode',0); start = [mesh.x(1) , 0 , mesh.z(1)]; stop = [mesh.x(end) , 0 , mesh.z(end)]; CSX = AddBox(CSX,'Et_',0 , start,stop); CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',0); CSX = AddBox(CSX,'Ht_',0,start,stop); % voltage calc (take a voltage average to be at the same spot as the % current calculation) CSX = AddProbe(CSX,'ut1_1',0); start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ]; CSX = AddBox(CSX,'ut1_1', 0 ,start,stop); CSX = AddProbe(CSX,'ut1_2',0); start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ]; CSX = AddBox(CSX,'ut1_2', 0 ,start,stop); CSX = AddProbe(CSX,'ut_ex',0); start = [ rad_i 0 0 ];stop = [ rad_a 0 0 ]; CSX = AddBox(CSX,'ut_ex', 0 ,start,stop); % current calc CSX = AddProbe(CSX,'it1',1); mid = 0.5*(rad_i+rad_a); start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ]; CSX = AddBox(CSX,'it1', 0 ,start,stop); %% run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); RunOpenEMS(Sim_Path,Sim_CSX,openEMS_opts); %% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UI = ReadUI({'ut1_1','ut1_2','it1'},Sim_Path); plot(UI.TD{1}.t,UI.TD{1}.val) UI_ex = ReadUI({'ut_ex'},'tmp/'); hold on; plot(UI_ex.TD{1}.t,UI_ex.TD{1}.val,'r--'); u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current i_f = UI.FD{3}.val; figure ZL = Z0/2/pi/sqrt(epsR)*log(rad_a/rad_i); %analytic line-impedance of a coax plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g'); hold on; grid on; Z = u_f./i_f; plot(UI.FD{1}.f,real(Z),'Linewidth',2); plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2); xlim([0 2*f0]); legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');