/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef OPERATOR_CYLINDERMULTIGRID_H
#define OPERATOR_CYLINDERMULTIGRID_H
#include "operator_cylinder.h"
//! This is a cylindrical FDTD operator using a simple multi-grid approach.
/*!
This cylindrical multi-grid operator itself is not calculating any real operator, instead it is hosting two separate "child" operators of type "Operator_Cylinder".
This operator class (or the corresponding engine) will perform the interpolation and connection between these two child-operator/engines.
One of the child operators itself may be another multi-grid operator to allow for a cascaded multi-grid approach.
*/
class Operator_CylinderMultiGrid : public Operator_Cylinder
{
friend class Engine_CylinderMultiGrid;
public:
static Operator_CylinderMultiGrid* New(vector Split_Radii, unsigned int numThreads = 0);
virtual ~Operator_CylinderMultiGrid();
virtual double GetNumberCells() const;
virtual Engine* CreateEngine() const;
virtual bool SetGeometryCSX(ContinuousStructure* geo);
virtual unsigned int GetSplitPos() const {return m_Split_Pos;}
virtual int CalcECOperator( DebugFlags debugFlags = None );
virtual bool SetupExcitation(TiXmlElement* Excite, unsigned int maxTS);
virtual void SetBoundaryCondition(int* BCs);
virtual void AddExtension(Operator_Extension* op_ext);
Operator_Cylinder* GetInnerOperator() const {return m_InnerOp;}
virtual void ShowStat() const;
protected:
Operator_CylinderMultiGrid(vector Split_Radii);
virtual void Init();
// virtual void InitOperator();
virtual void Reset();
double m_Split_Rad;
vector m_Split_Radii;
unsigned int m_Split_Pos;
Operator_Cylinder* m_InnerOp;
virtual void CalcStartStopLines(unsigned int &numThreads, vector &start, vector &stop) const;
};
#endif // OPERATOR_CYLINDERMULTIGRID_H