/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "operator_ext_upml.h"
#include "FDTD/operator_cylindermultigrid.h"
#include "engine_ext_upml.h"
#include "tools/array_ops.h"
#include "fparser.hh"
using namespace std;
Operator_Ext_UPML::Operator_Ext_UPML(Operator* op) : Operator_Extension(op)
{
setlocale(LC_NUMERIC, "en_US.UTF-8");
m_GradingFunction = new FunctionParser();
//default grading function
SetGradingFunction(" -log(1e-6)*log(2.5)/(2*dl*Z*(pow(2.5,W/dl)-1)) * pow(2.5, D/dl) ");
for (int n=0; n<6; ++n)
{
m_BC[n]=0;
m_Size[n]=0;
}
for (int n=0; n<3; ++n)
{
m_StartPos[n]=0;
m_numLines[n]=0;
}
vv = NULL;
vvfo = NULL;
vvfn = NULL;
ii = NULL;
iifo = NULL;
iifn = NULL;
}
Operator_Ext_UPML::~Operator_Ext_UPML()
{
delete m_GradingFunction;
m_GradingFunction = NULL;
DeleteOp();
}
void Operator_Ext_UPML::SetBoundaryCondition(const int* BCs, const unsigned int size[6])
{
for (int n=0; n<6; ++n)
{
m_BC[n]=BCs[n];
m_Size[n]=size[n];
}
}
void Operator_Ext_UPML::SetRange(const unsigned int start[3], const unsigned int stop[3])
{
for (int n=0; n<3; ++n)
{
m_StartPos[n]=start[n];
m_numLines[n]=stop[n]-start[n]+1;
}
}
bool Operator_Ext_UPML::Create_UPML(Operator* op, const int ui_BC[6], const unsigned int ui_size[6], string gradFunc)
{
int BC[6]={ui_BC[0],ui_BC[1],ui_BC[2],ui_BC[3],ui_BC[4],ui_BC[5]};
unsigned int size[6]={ui_size[0],ui_size[1],ui_size[2],ui_size[3],ui_size[4],ui_size[5]};
//check if mesh is large enough to support the pml
for (int n=0; n<3; ++n)
if ( (size[2*n]*(BC[2*n]==3)+size[2*n+1]*(BC[2*n+1]==3)) >= op->GetNumberOfLines(n,true) )
{
cerr << "Operator_Ext_UPML::Create_UPML: Warning: Not enough lines in direction: " << n << ", resetting to PEC" << endl;
BC[2*n]=0;
size[2*n]=0;
BC[2*n+1]=0;
size[2*n+1]=0;
}
//check cylindrical coord compatiblility
Operator_Cylinder* op_cyl = dynamic_cast(op);
if (op_cyl)
{
if ((BC[0]==3) && (op_cyl->GetClosedAlpha() || op_cyl->GetR0Included()))
{
BC[0]=0;
size[0]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in r-min direction is not possible, resetting to PEC..." << endl;
}
if ( (BC[2]==3) && (op_cyl->GetClosedAlpha()) )
{
BC[2]=0;
size[2]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-min direction is not possible, resetting to PEC..." << endl;
}
if ( (BC[3]==3) && (op_cyl->GetClosedAlpha()) )
{
BC[3]=0;
size[3]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha-max direction is not possible, resetting to PEC..." << endl;
}
}
//check cylindrical coord compatiblility
if (dynamic_cast(op))
{
if (BC[2]==3)
{
BC[2]=0;
size[2]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
}
if (BC[3]==3)
{
BC[3]=0;
size[3]=0;
cerr << "Operator_Ext_UPML::Create_UPML: Warning: An upml in alpha direction is not possible for a cylindrical multi-grid, resetting to PEC..." << endl;
}
}
Operator_Ext_UPML* op_ext_upml=NULL;
unsigned int start[3]={0 ,0 ,0};
unsigned int stop[3] ={op->GetNumberOfLines(0,true)-1,op->GetNumberOfLines(1,true)-1,op->GetNumberOfLines(2,true)-1};
//create a pml in x-direction over the full width of yz-space
if (BC[0]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[0]=0;
stop[0] =size[0];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[1]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[0]=op->GetNumberOfLines(0,true)-1-size[1];
stop[0] =op->GetNumberOfLines(0,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
//create a pml in y-direction over the xz-space (if a pml in x-direction already exists, skip that corner regions)
start[0]=(size[0]+1)*(BC[0]==3);
stop[0] =op->GetNumberOfLines(0,true)-1-(size[0]+1)*(BC[1]==3);
if (BC[2]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[1]=0;
stop[1] =size[2];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[3]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[1]=op->GetNumberOfLines(1,true)-1-size[3];
stop[1] =op->GetNumberOfLines(1,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
//create a pml in z-direction over the xy-space (if a pml in x- and/or y-direction already exists, skip that corner/edge regions)
start[1]=(size[2]+1)*(BC[2]==3);
stop[1] =op->GetNumberOfLines(1,true)-1-(size[3]+1)*(BC[3]==3);
//exclude x-lines that does not belong to the base multi-grid operator;
Operator_CylinderMultiGrid* op_cyl_MG = dynamic_cast(op);
if (op_cyl_MG)
start[0] = op_cyl_MG->GetSplitPos()-1;
if (BC[4]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=0;
stop[2] =size[4];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
if (BC[5]==3)
{
op_ext_upml = new Operator_Ext_UPML(op);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=op->GetNumberOfLines(2,true)-1-size[5];
stop[2] =op->GetNumberOfLines(2,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op->AddExtension(op_ext_upml);
}
BC[1]=0;
size[1]=0;
//create pml extensions (in z-direction only) for child operators in cylindrical multigrid operators
while (op_cyl_MG)
{
Operator_Cylinder* op_child = op_cyl_MG->GetInnerOperator();
op_cyl_MG = dynamic_cast(op_child);
for (int n=0; n<2; ++n)
{
start[n]=0;
stop[n]=op_child->GetNumberOfLines(n,true)-1;
}
if (op_cyl_MG)
start[0] = op_cyl_MG->GetSplitPos()-1;
if (BC[4]==3)
{
op_ext_upml = new Operator_Ext_UPML(op_child);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=0;
stop[2] =size[4];
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op_child->AddExtension(op_ext_upml);
}
if (BC[5]==3)
{
op_ext_upml = new Operator_Ext_UPML(op_child);
op_ext_upml->SetGradingFunction(gradFunc);
start[2]=op->GetNumberOfLines(2,true)-1-size[5];
stop[2] =op->GetNumberOfLines(2,true)-1;
op_ext_upml->SetBoundaryCondition(BC, size);
op_ext_upml->SetRange(start,stop);
op_child->AddExtension(op_ext_upml);
}
}
return true;
}
void Operator_Ext_UPML::DeleteOp()
{
Delete_N_3DArray(vv,m_numLines);
vv = NULL;
Delete_N_3DArray(vvfo,m_numLines);
vvfo = NULL;
Delete_N_3DArray(vvfn,m_numLines);
vvfn = NULL;
Delete_N_3DArray(ii,m_numLines);
ii = NULL;
Delete_N_3DArray(iifo,m_numLines);
iifo = NULL;
Delete_N_3DArray(iifn,m_numLines);
iifn = NULL;
}
bool Operator_Ext_UPML::SetGradingFunction(string func)
{
if (func.empty())
return true;
m_GradFunc = func;
int res = m_GradingFunction->Parse(m_GradFunc.c_str(), "D,dl,W,Z,N");
if (res < 0) return true;
cerr << "Operator_Ext_UPML::SetGradingFunction: Warning, an error occurred parsing the pml grading function (see below) ..." << endl;
cerr << func << "\n" << string(res, ' ') << "^\n" << m_GradingFunction->ErrorMsg() << "\n";
return false;
}
void Operator_Ext_UPML::CalcGradingKappa(int ny, unsigned int pos[3], double Zm, double kappa_v[3], double kappa_i[3])
{
double depth=0;
double width=0;
for (int n=0; n<3; ++n)
{
if ((pos[n] <= m_Size[2*n]) && (m_BC[2*n]==3)) //lower pml in n-dir
{
width = (m_Op->GetDiscLine(n,m_Size[2*n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();
depth = width - (m_Op->GetDiscLine(n,pos[n]) - m_Op->GetDiscLine(n,0))*m_Op->GetGridDelta();
if ((m_Op_Cyl) && (n==1))
{
width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
}
if (n==ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
double vars[5] = {depth, width/m_Size[2*n], width, Zm, (double)m_Size[2*n]};
if (depth>0)
kappa_v[n] = m_GradingFunction->Eval(vars);
else
kappa_v[n]=0;
if (n==ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
if (n!=ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
if (depth<0)
depth=0;
vars[0]=depth;
if (depth>0)
kappa_i[n] = m_GradingFunction->Eval(vars);
else
kappa_i[n] = 0;
}
else if ((pos[n] >= m_Op->GetNumberOfLines(n,true) -1 -m_Size[2*n+1]) && (m_BC[2*n+1]==3)) //upper pml in n-dir
{
width = (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-m_Size[2*n+1]-1))*m_Op->GetGridDelta();
depth = width - (m_Op->GetDiscLine(n,m_Op->GetNumberOfLines(n,true)-1) - m_Op->GetDiscLine(n,pos[n]))*m_Op->GetGridDelta();
if ((m_Op_Cyl) && (n==1))
{
width *= m_Op_Cyl->GetDiscLine(0,pos[0]);
depth *= m_Op_Cyl->GetDiscLine(0,pos[0]);
}
if (n==ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
double vars[5] = {depth, width/(m_Size[2*n]), width, Zm, (double)m_Size[2*n]};
if (depth>0)
kappa_v[n] = m_GradingFunction->Eval(vars);
else
kappa_v[n]=0;
if (n==ny)
depth-=m_Op->GetEdgeLength(n,pos)/2;
if (n!=ny)
depth+=m_Op->GetEdgeLength(n,pos)/2;
if (depth>width)
depth=0;
vars[0]=depth;
if (depth>0)
kappa_i[n] = m_GradingFunction->Eval(vars);
else
kappa_i[n]=0;
}
else
{
kappa_v[n] = 0;
kappa_i[n] = 0;
}
}
}
bool Operator_Ext_UPML::BuildExtension()
{
/*Calculate the upml coefficients as defined in:
Allen Taflove, computational electrodynamics - the FDTD method, third edition, chapter 7.8, pages 297-300
- modified by Thorsten Liebig to match the equivalent circuit (EC) FDTD method
- kappa is used for conductivities (instead of sigma)
*/
if (m_Op==NULL)
return false;
DeleteOp();
vv = Create_N_3DArray(m_numLines);
vvfo = Create_N_3DArray(m_numLines);
vvfn = Create_N_3DArray(m_numLines);
ii = Create_N_3DArray(m_numLines);
iifo = Create_N_3DArray(m_numLines);
iifn = Create_N_3DArray(m_numLines);
unsigned int pos[3];
unsigned int loc_pos[3];
int nP,nPP;
double kappa_v[3]={0,0,0};
double kappa_i[3]={0,0,0};
double eff_Mat[4];
double dT = m_Op->GetTimestep();
for (loc_pos[0]=0; loc_pos[0] vPrims = m_Op->GetPrimitivesBoundBox(pos[0], pos[1], -1, CSProperties::MATERIAL);
for (loc_pos[2]=0; loc_pos[2]Calc_EffMatPos(n,pos,eff_Mat,vPrims);
CalcGradingKappa(n, pos,__Z0__ ,kappa_v ,kappa_i);
nP = (n+1)%3;
nPP = (n+2)%3;
// if eff_Mat[1] > 1e3 assume a metal and disable PML to continue a signal layer
// sigma > 1000 S/m is "very lossy" already...
if (((kappa_v[0]+kappa_v[1]+kappa_v[2])!=0) && (eff_Mat[1]<1e3))
{
//check if pos is on PEC
if ( (m_Op->GetVV(n,pos[0],pos[1],pos[2]) + m_Op->GetVI(n,pos[0],pos[1],pos[2])) != 0 )
{
//modify the original operator to perform eq. (7.85) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original voltages with the "voltage flux" (volt*eps0) prior to the voltage updates
//after the updates are done the extension will calculate the new voltages (see below) and place them back into the main field domain
m_Op->SetVV(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_v[nP]*dT) / (2*__EPS0__ + kappa_v[nP]*dT) );
m_Op->SetVI(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_v[nP]*dT) * m_Op->GetEdgeLength(n,pos) / m_Op->GetEdgeArea(n,pos) );
//operators needed by eq. (7.88) to calculate new voltages from old voltages and old and new "voltage fluxes"
GetVV(n,loc_pos) = (2*__EPS0__ - kappa_v[nPP]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT);
GetVVFN(n,loc_pos) = (2*__EPS0__ + kappa_v[n]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
GetVVFO(n,loc_pos) = (2*__EPS0__ - kappa_v[n]*dT) / (2*__EPS0__ + kappa_v[nPP]*dT)/eff_Mat[0];
}
}
else
{
//disable upml
GetVV(n,loc_pos) = m_Op->GetVV(n,pos[0],pos[1],pos[2]);
m_Op->SetVV(n,pos[0],pos[1],pos[2], 0 );
GetVVFO(n,loc_pos) = 0;
GetVVFN(n,loc_pos) = 1;
}
if ((kappa_i[0]+kappa_i[1]+kappa_i[2])!=0)
{
//check if pos is on PMC
if ( (m_Op->GetII(n,pos[0],pos[1],pos[2]) + m_Op->GetIV(n,pos[0],pos[1],pos[2])) != 0 )
{
//modify the original operator to perform eq. (7.89) by the main engine (EC-FDTD: equation is multiplied by delta_n)
//the engine extension will replace the original currents with the "current flux" (curr*mu0) prior to the current updates
//after the updates are done the extension will calculate the new currents (see below) and place them back into the main field domain
m_Op->SetII(n,pos[0],pos[1],pos[2], (2*__EPS0__ - kappa_i[nP]*dT) / (2*__EPS0__ + kappa_i[nP]*dT) );
m_Op->SetIV(n,pos[0],pos[1],pos[2], (2*__EPS0__*dT) / (2*__EPS0__ + kappa_i[nP]*dT) * m_Op->GetEdgeLength(n,pos,true) / m_Op->GetEdgeArea(n,pos,true) );
//operators needed by eq. (7.90) to calculate new currents from old currents and old and new "current fluxes"
GetII(n,loc_pos) = (2*__EPS0__ - kappa_i[nPP]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT);
GetIIFN(n,loc_pos) = (2*__EPS0__ + kappa_i[n]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
GetIIFO(n,loc_pos) = (2*__EPS0__ - kappa_i[n]*dT) / (2*__EPS0__ + kappa_i[nPP]*dT)/eff_Mat[2];
}
}
else
{
//disable upml
GetII(n,loc_pos) = m_Op->GetII(n,pos[0],pos[1],pos[2]);
m_Op->SetII(n,pos[0],pos[1],pos[2], 0 );
GetIIFO(n,loc_pos) = 0;
GetIIFN(n,loc_pos) = 1;
}
}
}
}
}
return true;
}
Engine_Extension* Operator_Ext_UPML::CreateEngineExtention()
{
Engine_Ext_UPML* eng_ext = new Engine_Ext_UPML(this);
return eng_ext;
}
void Operator_Ext_UPML::ShowStat(ostream &ostr) const
{
Operator_Extension::ShowStat(ostr);
ostr << " PML range\t\t: " << "[" << m_StartPos[0]<< "," << m_StartPos[1]<< "," << m_StartPos[2]<< "] to ["
<< m_StartPos[0]+m_numLines[0]-1 << "," << m_StartPos[1]+m_numLines[1]-1 << "," << m_StartPos[2]+m_numLines[2]-1 << "]" << endl;
ostr << " Grading function\t: \"" << m_GradFunc << "\"" << endl;
}