% % Tutorials / CRLH_LeakyWaveAnt % % Describtion at: % http://openems.de/index.php/Tutorial:_CRLH_Leaky_Wave_Antenna % % Tested with % - Matlab 2011a / Octave 3.4.3 % - openEMS v0.0.27 % % (C) 2011,2012 Thorsten Liebig close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% physical_constants; unit = 1e-6; % specify everything in um feed_length = 20000; substrate_thickness = [1524 101 254]; substrate_epsr = [3.48 3.48 3.48]; substrate_tanD = [1 1 1]*1e-3; N_Cells = 8; %number of CRLH unit cells CRLH.LL = 14e3; %CRLH totel (line) length CRLH.LW = 4e3; %CRLH unit cell width (without the stubs) CRLH.GLB = 1950; %CRLH gap width bottom layer CRLH.GLT = 4700; %CRLH gap width top layer CRLH.SL = 7800; %CRLH stub length (bottom layer, both sides) CRLH.SW = 1000; %CRLH stub width (bottom layer, both sides) CRLH.VR = 250; %CRLH via hole radius (stub -> ground) CRLH.TopSig = sum(substrate_thickness); %top layer height CRLH.BottomSig = CRLH.TopSig - substrate_thickness(end); %bottom layer height substrate_width = CRLH.LW + 2*CRLH.SL; Air_Spacer = 30000; % frequency range of interest f_start = 1e9; f_stop = 6e9; % frequencies to calculate the 3D radiation pattern f_rad = (1.9:0.05:4.2)*1e9; nf2ff_resolution = c0/max(f_rad)/unit/15; %% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitFDTD('EndCriteria', 1e-3); FDTD = SetGaussExcite( FDTD, (f_start+f_stop)/2, (f_stop-f_start)/2 ); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; FDTD = SetBoundaryCond( FDTD, BC ); %% Setup a basic mesh and create the CRLH unit cell CSX = InitCSX(); resolution = c0/(f_stop*sqrt(max(substrate_epsr)))/unit /30; % resolution of lambda/30 mesh.x = [-feed_length-(N_Cells*CRLH.LL)/2-Air_Spacer -feed_length-(N_Cells*CRLH.LL)/2 0 feed_length+(N_Cells*CRLH.LL)/2 feed_length+(N_Cells*CRLH.LL)/2+Air_Spacer]; mesh.y = [-Air_Spacer-substrate_width/2 0 Air_Spacer+substrate_width/2]; substratelines = cumsum(substrate_thickness); mesh.z = [-0.5*Air_Spacer 0 cumsum(substrate_thickness) linspace(substratelines(end-1),substratelines(end),4) Air_Spacer]; % create the CRLH unit cells (will define additional fixed mesh lines) pos_x = -(N_Cells*CRLH.LL)/2 + CRLH.LL/2; for n=1:N_Cells [CSX mesh] = CreateCRLH(CSX, mesh, CRLH, resolution/4, [pos_x 0 0]); pos_x = pos_x + CRLH.LL; end % Smooth the given mesh mesh = SmoothMesh(mesh, resolution, 1.5); CSX = DefineRectGrid( CSX, unit, mesh ); %% Setup the substrate layer substratelines = [0 substratelines]; for n=1:numel(substrate_thickness) CSX = AddMaterial( CSX, ['substrate' int2str(n)] ); CSX = SetMaterialProperty( CSX, ['substrate' int2str(n)], 'Epsilon', substrate_epsr(n), 'Kappa', substrate_tanD(n)*substrate_epsr(n)*EPS0*2*pi*3e9 ); start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, substratelines(n)]; stop = [+feed_length+(N_Cells*CRLH.LL)/2, substrate_width/2, substratelines(n+1)]; CSX = AddBox( CSX, ['substrate' int2str(n)], 0, start, stop ); end %% add the feeding MSL ports %ground plane CSX = AddMetal( CSX, 'ground' ); start = [-feed_length-(N_Cells*CRLH.LL)/2, -substrate_width/2, 0]; stop = [+feed_length+(N_Cells*CRLH.LL)/2, substrate_width/2, 0]; CSX = AddBox( CSX, 'ground', 0, start, stop ); CSX = AddMetal( CSX, 'PEC' ); portstart = [ -feed_length-(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)]; portstop = [ -(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0]; [CSX,port{1}] = AddMSLPort( CSX, 999, 1, 'PEC', portstart, portstop, 0, [0 0 -1], 'ExcitePort', true, 'MeasPlaneShift', feed_length/2, 'Feed_R', 50); portstart = [ feed_length+(N_Cells*CRLH.LL)/2 , -CRLH.LW/2, substratelines(end)]; portstop = [ +(N_Cells*CRLH.LL)/2, CRLH.LW/2, 0]; [CSX,port{2}] = AddMSLPort( CSX, 999, 2, 'PEC', portstart, portstop, 0, [0 0 -1], 'MeasPlaneShift', feed_length/2, 'Feed_R', 50 ); %% nf2ff calc start = [mesh.x(1) mesh.y(1) mesh.z(1) ] + 10*resolution; stop = [mesh.x(end) mesh.y(end) mesh.z(end)] - 10*resolution; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'OptResolution', nf2ff_resolution); %% write/show/run the openEMS compatible xml-file Sim_Path = 'tmp_CRLH_LeakyWave'; Sim_CSX = 'CRLH.xml'; [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); RunOpenEMS( Sim_Path, Sim_CSX ); %% post-processing close all f = linspace( f_start, f_stop, 1601 ); port = calcPort( port, Sim_Path, f, 'RefPlaneShift', feed_length*unit); s11 = port{1}.uf.ref./ port{1}.uf.inc; s21 = port{2}.uf.ref./ port{1}.uf.inc; plot(f/1e9,20*log10(abs(s11)),'k-','LineWidth',2); hold on; grid on; plot(f/1e9,20*log10(abs(s21)),'r--','LineWidth',2); l = legend('S_{11}','S_{21}','Location','Best'); set(l,'FontSize',12); ylabel('S-Parameter (dB)','FontSize',12); xlabel('frequency (GHz) \rightarrow','FontSize',12); ylim([-40 2]); drawnow %% calculate 3D pattern phi = 0:2:360; theta = 0:2:180; disp( 'calculating 3D far field pattern...' ); nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_rad, theta*pi/180, phi*pi/180, 'Outfile','3D_Pattern.h5', 'Mode', 0,'Verbose',1); %% P_in = interp1(f, port.P_acc, f_rad); figure() [AX,H1,H2] = plotyy(f_rad/1e9,nf2ff.Dmax',f_rad/1e9,100*nf2ff.Prad'./P_in,'plot'); grid on xlabel( 'frequency (GHz)' ); set(get(AX(1),'Ylabel'),'String','directivity (dBi)') set(get(AX(2),'Ylabel'),'String','radiation efficiency (%)') set(H1,'Linewidth',2) set(H2,'Linewidth',2) set(H1,'Marker','*') set(H2,'Marker','s') drawnow %% disp( 'dumping 3D far field pattern to vtk, use Paraview to visualize...' ); for n=1:numel(f_rad) E_far_normalized_3D = nf2ff.E_norm{n} / max(max(nf2ff.E_norm{n})) * nf2ff.Dmax(n); DumpFF2VTK( [Sim_Path '/FF_Pattern_' int2str(f_rad(n)/1e6) 'MHz.vtk'],E_far_normalized_3D,theta,phi,'scale',1e-3); end