/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include "tools/global.h"
#include "processfields.h"
#include "FDTD/engine_interface_fdtd.h"
ProcessFields::ProcessFields(Operator_Base* op) : Processing(op)
{
m_DumpType = E_FIELD_DUMP;
// vtk-file is default
m_fileType = VTK_FILETYPE;
SetSubSampling(1);
SetPrecision(6);
for (int n=0;n<3;++n)
{
numLines[n]=0;
discLines[n]=NULL;
}
}
ProcessFields::~ProcessFields()
{
for (int n=0;n<3;++n)
{
delete[] discLines[n];
discLines[n]=NULL;
}
}
void ProcessFields::InitProcess()
{
if (Enabled==false) return;
//get the correct direction names for all coordinate systems
string names[] = {Op->GetDirName(0),Op->GetDirName(1),Op->GetDirName(2)};
if (m_fileType==HDF5_FILETYPE)
{
m_filename+= ".h5";
H5::H5File* file = new H5::H5File( m_filename , H5F_ACC_TRUNC );
H5::Group* group = new H5::Group( file->createGroup( "/Mesh" ));
for (int n=0;n<3;++n)
{
hsize_t dimsf[1]; // dataset dimensions
dimsf[0] = numLines[n];
H5::DataSpace dataspace( 1, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
H5::DataSet dataset = group->createDataSet( names[n].c_str(), datatype, dataspace );
//convert to float...
float* array = new float[numLines[n]];
for (unsigned int i=0;iGetGridDelta();
#endif
}
//write to dataset
dataset.write( array, H5::PredType::NATIVE_FLOAT );
}
delete group;
group = new H5::Group( file->createGroup( "/FieldData" ));
delete group;
delete file;
}
}
string ProcessFields::GetFieldNameByType(DumpType type)
{
switch (type)
{
case E_FIELD_DUMP:
return "E-Field";
case H_FIELD_DUMP:
return "H-Field";
}
return "unknown field";
}
void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
{
vector lines;
// determine mesh type
bool dualMesh = false;
if (m_DumpType == H_FIELD_DUMP)
dualMesh = true;
Engine_Interface_Base::InterpolationType m_DumpMode = m_Eng_Interface->GetInterpolationType();
if (m_DumpMode==Engine_Interface_Base::NO_INTERPOLATION)
{
if (!Op->SnapToMesh(dstart,start,dualMesh))
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (!Op->SnapToMesh(dstop,stop,dualMesh))
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
for (int n=0;n<3;++n)
{
// normalize order of start and stop
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
// construct new discLines
lines.clear();
for (unsigned int i=start[n];i<=stop[n];i+=subSample[n])
{
lines.push_back(Op->GetDiscLine(n,i,dualMesh));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;iSnapToMesh(dstart,start)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (Op->SnapToMesh(dstop,stop)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
//create mesh
for (int n=0;n<3;++n)
{
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
// if (stop[n]==Op->GetNumberOfLines(n)-1)
// --stop[n];
// cerr << "start " << start[n] << "stop " << stop[n];
lines.clear();
for (unsigned int i=start[n];i<=stop[n];i+=subSample[n])
{
lines.push_back(Op->GetDiscLine(n,i));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;iSnapToMesh(dstart,start,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (Op->SnapToMesh(dstop,stop,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
//create dual mesh
for (int n=0;n<3;++n)
{
// cerr << "start " << start[n] << "stop " << stop[n];
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
++stop[n];
lines.clear();
for (unsigned int i=start[n];iGetDiscLine(n,i,true));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;iGetDiscLine( 0, start[0], dualMesh ) << ","
<< Op->GetDiscLine( 1, start[1], dualMesh ) << "," << Op->GetDiscLine( 2, start[2], dualMesh ) << ") -> ("
<< Op->GetDiscLine( 0, stop[0], dualMesh ) << ","<< Op->GetDiscLine( 1, stop[1], dualMesh ) << ","
<< Op->GetDiscLine( 2, stop[2], dualMesh ) << ")";
cerr << " [" << start[0] << "," << start[1] << "," << start[2] << "] -> ["
<< stop[0] << "," << stop[1] << "," << stop[2] << "]" << endl;
}
}
double ProcessFields::CalcTotalEnergy() const
{
double energy=0.0;
Engine_Interface_FDTD* EI_FDTD = dynamic_cast(m_Eng_Interface);
if (EI_FDTD)
{
const Engine* Eng = EI_FDTD->GetFDTDEngine();
unsigned int pos[3];
for (pos[0]=0;pos[0]GetNumberOfLines(0);++pos[0])
{
for (pos[1]=0;pos[1]GetNumberOfLines(1);++pos[1])
{
for (pos[2]=0;pos[2]GetNumberOfLines(2);++pos[2])
{
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
}
}
}
}
return energy*0.5;
}
void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir)
{
if (dir>2) return;
if (dir<0)
{
subSample[0]=subSampleRate;
subSample[1]=subSampleRate;
subSample[2]=subSampleRate;
}
else subSample[dir]=subSampleRate;
}
void ProcessFields::WriteVTKHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
if (meshT==CARTESIAN_MESH)
WriteVTKCartesianGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
else if (meshT==CYLINDRICAL_MESH)
WriteVTKCylindricalGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
else
cerr << "ProcessFields::WriteVTKHeader: Warning: unknown mesh type, skipping header -> file will be invalid..." << endl;
}
void ProcessFields::WriteVTKCartesianGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling)
{
file << "# vtk DataFile Version 2.0" << endl;
file << "Rectilinear Grid openEMS_ProcessFields";
if (!header_info.empty())
file << " " << header_info;
file << endl;
file << "ASCII" << endl;
file << "DATASET RECTILINEAR_GRID " << endl;
file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl;
file << "X_COORDINATES " << numLines[0] << " " << __VTK_DATA_TYPE__ << endl;
for (unsigned int i=0;i