# -*- coding: utf-8 -*- """ Created on Fri Dec 18 20:56:53 2015 @author: thorsten """ import os, tempfile from pylab import * from CSXCAD import CSXCAD from openEMS.openEMS import openEMS from openEMS.physical_constants import * Sim_Path = os.path.join(tempfile.gettempdir(), 'Simp_Patch') post_proc_only = True # patch width in x-direction patch_width = 32 # resonant length # patch length in y-direction patch_length = 40 #substrate setup substrate_epsR = 3.38 substrate_kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate_epsR substrate_width = 60 substrate_length = 60 substrate_thickness = 1.524 substrate_cells = 4 #setup feeding feed_pos = -6 #feeding position in x-direction feed_R = 50 #feed resistance # size of the simulation box SimBox = np.array([200, 200, 150]) ## setup FDTD parameter & excitation function f0 = 2e9 # center frequency fc = 1e9 # 20 dB corner frequency FDTD = openEMS(NrTS=30000, EndCriteria=1e-4) FDTD.SetGaussExcite( f0, fc ) FDTD.SetBoundaryCond( ['MUR', 'MUR', 'MUR', 'MUR', 'MUR', 'MUR'] ) mesh_res = C0/(f0+fc)/1e-3/20 CSX = CSXCAD.ContinuousStructure() FDTD.SetCSX(CSX) #initialize the mesh with the "air-box" dimensions mesh = {} mesh['x'] = [-SimBox[0]/2, feed_pos, SimBox[0]/2] mesh['y'] = [-SimBox[1]/2, SimBox[1]/2] mesh['z'] = [-SimBox[2]/3, SimBox[2]*2/3] ## create patch patch = CSX.AddMetal( 'patch' ) # create a perfect electric conductor (PEC) start = [-patch_width/2, -patch_length/2, substrate_thickness] stop = [ patch_width/2 , patch_length/2, substrate_thickness] pb=CSX.AddBox(patch, priority=10, start=start, stop=stop) # add a box-primitive to the metal property 'patch' edge_mesh = np.array([-1/3.0, 2/3.0]) * mesh_res/2 mesh['x'] = r_[mesh['x'], start[0]-edge_mesh, stop[0]+edge_mesh] mesh['y'] = r_[mesh['y'], start[1]-edge_mesh, stop[1]+edge_mesh] ## create substrate substrate = CSX.AddMaterial( 'substräte', Epsilon=substrate_epsR, Kappa=substrate_kappa) start = [-substrate_width/2, -substrate_length/2, 0] stop = [ substrate_width/2, substrate_length/2, substrate_thickness] sb=CSX.AddBox( substrate, priority=0, start=start, stop=stop ) # add extra cells to discretize the substrate thickness mesh['z'] = r_[mesh['z'], linspace(0,substrate_thickness,substrate_cells+1)] ## create ground (same size as substrate) gnd = CSX.AddMetal( 'gnd' ) # create a perfect electric conductor (PEC) start[2]=0 stop[2] =0 gb=CSX.AddBox(gnd, start, stop, priority=10) mesh['x'] = r_[mesh['x'], start[0], stop[0]] mesh['y'] = r_[mesh['y'], start[1], stop[1]] ## apply the excitation & resist as a current source start = [feed_pos, 0, 0] stop = [feed_pos, 0, substrate_thickness] port = FDTD.AddLumpedPort(1 ,feed_R, start, stop, 'z', 1.0, priority=5) mesh['x'] = r_[mesh['x'], start[0]] mesh['y'] = r_[mesh['y'], start[1]] CSX.DefineGrid(mesh, unit=1e-3, smooth_mesh_res=mesh_res) nf2ff = FDTD.CreateNF2FFBox() if 0: # debugging only CSX_file = os.path.join(Sim_Path, 'simp_patch.xml') CSX.Write2XML(CSX_file) os.system(r'AppCSXCAD "{}"'.format(CSX_file)) if not post_proc_only: FDTD.Run(Sim_Path, verbose=3, cleanup=True) f = np.linspace(max(1e9,f0-fc),f0+fc,401) port.CalcPort(Sim_Path, f) s11 = port.uf_ref/port.uf_inc s11_dB = 20.0*np.log10(np.abs(s11)) figure() plot(f/1e9, s11_dB) grid() ylabel('s11 (dB)') xlabel('frequency (GHz)') idx = np.where((s11_dB<-10) & (s11_dB==np.min(s11_dB)))[0] if not len(idx)==1: print('No resonance frequency found for far-field calulation') else: f_res = f[idx[0]] theta = np.arange(-180.0, 180.0, 2.0) phi = [0., 90.] nf2ff.CalcNF2FF(Sim_Path, f_res, theta, phi, center=[0,0,1e-3], read_cached=False ) figure() E_norm = 20.0*np.log10(nf2ff.E_norm[0]/np.max(nf2ff.E_norm[0])) + nf2ff.Dmax[0] plot(theta, np.squeeze(E_norm[:,0]), label='xz-plane') plot(theta, np.squeeze(E_norm[:,1]), label='yz-plane') grid() ylabel('directivity (dBi)') xlabel('theta (deg)') title('Frequency: {} GHz'.format(f_res/1e9)) legend() Zin = port.uf_tot/port.if_tot figure() plot(f/1e9, np.real(Zin)) plot(f/1e9, np.imag(Zin)) grid() ylabel('Zin (Ohm)') xlabel('frequency (GHz)') show()