% % Tutorials / conical horn antenna % % Description at: % http://openems.de/index.php/Tutorial:_Conical_Horn_Antenna % % Tested with % - Matlab 2011a / Octave 4.0 % - openEMS v0.0.33 % % (C) 2011-2015 Thorsten Liebig close all clear clc %% setup the simulation physical_constants; unit = 1e-3; % all length in mm % horn radius horn.radius = 20; % horn length in z-direction horn.length = 50; horn.feed_length = 50; horn.thickness = 2; % horn opening angle horn.angle = 20*pi/180; % size of the simulation box SimBox = [100 100 100]*2; % frequency range of interest f_start = 10e9; f_stop = 20e9; % frequency of interest f0 = 15e9; %% setup FDTD parameter & excitation function FDTD = InitFDTD( 'NrTS', 30000, 'EndCriteria', 1e-4 ); FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start)); BC = {'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8' 'PML_8'}; % boundary conditions FDTD = SetBoundaryCond( FDTD, BC ); %% setup CSXCAD geometry & mesh % currently, openEMS cannot automatically generate a mesh max_res = c0 / (f_stop) / unit / 15; % cell size: lambda/20 CSX = InitCSX(); %create fixed lines for the simulation box, substrate and port mesh.x = [-SimBox(1)/2 -horn.radius 0 horn.radius SimBox(1)/2]; mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified fixed mesh lines mesh.y = mesh.x; %create fixed lines for the simulation box and given number of lines inside the substrate mesh.z = [-horn.feed_length 0 SimBox(3) ]; mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 ); CSX = DefineRectGrid( CSX, unit, mesh ); %% create horn % horn + waveguide, defined by a rotational polygon CSX = AddMetal(CSX, 'Conical_Horn'); p(1,1) = horn.radius+horn.thickness; % x-coord point 1 p(2,1) = -horn.feed_length; % z-coord point 1 p(1,end+1) = horn.radius+horn.thickness; % x-coord point 1 p(2,end) = 0; % z-coord point 1 p(1,end+1) = horn.radius+horn.thickness + sin(horn.angle)*horn.length; % x-coord point 2 p(2,end) = horn.length; % y-coord point 2 p(1,end+1) = horn.radius + sin(horn.angle)*horn.length; % x-coord point 2 p(2,end) = horn.length; % y-coord point 2 p(1,end+1) = horn.radius; % x-coord point 1 p(2,end) = 0; % z-coord point 1 p(1,end+1) = horn.radius; % x-coord point 1 p(2,end) = -horn.feed_length; % z-coord point 1 CSX = AddRotPoly(CSX,'Conical_Horn',10,'x',p,'z'); % horn aperture A = pi*((horn.radius + sin(horn.angle)*horn.length)*unit)^2; %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start=[-horn.radius -horn.radius mesh.z(10) ]; stop =[+horn.radius +horn.radius mesh.z(1)+horn.feed_length/2 ]; [CSX, port] = AddCircWaveGuidePort( CSX, 0, 1, start, stop, horn.radius*unit, 'TE11', 0, 1); %% CSX = AddDump(CSX,'Exc_dump'); start=[-horn.radius -horn.radius mesh.z(8)]; stop =[+horn.radius +horn.radius mesh.z(8)]; CSX = AddBox(CSX,'Exc_dump',0,start,stop); %% nf2ff calc start = [mesh.x(9) mesh.y(9) mesh.z(9)]; stop = [mesh.x(end-8) mesh.y(end-8) mesh.z(end-8)]; [CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop, 'Directions', [1 1 1 1 0 1]); %% prepare simulation folder Sim_Path = 'tmp'; Sim_CSX = 'horn_ant.xml'; [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder %% write openEMS compatible xml-file WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); %% show the structure CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); %% run openEMS RunOpenEMS( Sim_Path, Sim_CSX); %% postprocessing & do the plots freq = linspace(f_start,f_stop,201); port = calcPort(port, Sim_Path, freq); Zin = port.uf.tot ./ port.if.tot; s11 = port.uf.ref ./ port.uf.inc; % plot reflection coefficient S11 figure plot( freq/1e9, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); ylim([-60 0]); grid on title( 'reflection coefficient S_{11}' ); xlabel( 'frequency f / GHz' ); ylabel( 'reflection coefficient |S_{11}|' ); drawnow %% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % calculate the far field at phi=0 degrees and at phi=90 degrees thetaRange = (0:2:359) - 180; disp( 'calculating far field at phi=[0 90] deg...' ); nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, [0 90]*pi/180); Dlog=10*log10(nf2ff.Dmax); G_a = 4*pi*A/(c0/f0)^2; e_a = nf2ff.Dmax/G_a; % display some antenna parameter disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']); disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] ); disp( ['aperture efficiency: e_a = ' num2str(e_a*100) '%'] ); %% % normalized directivity figure plotFFdB(nf2ff,'xaxis','theta','param',[1 2]); drawnow % D_log = 20*log10(nf2ff.E_norm{1}/max(max(nf2ff.E_norm{1}))); % D_log = D_log + 10*log10(nf2ff.Dmax); % plot( nf2ff.theta, D_log(:,1) ,'k-', nf2ff.theta, D_log(:,2) ,'r-' ); % polar plot figure polarFF(nf2ff,'xaxis','theta','param',[1 2],'logscale',[-40 20], 'xtics', 12); drawnow % polar( nf2ff.theta, nf2ff.E_norm{1}(:,1) ) %% calculate 3D pattern phiRange = sort( unique( [-180:5:-100 -100:2.5:-50 -50:1:50 50:2.5:100 100:5:180] ) ); thetaRange = sort( unique([ 0:1:50 50:2.:100 100:5:180 ])); disp( 'calculating 3D far field...' ); nf2ff = CalcNF2FF(nf2ff, Sim_Path, f0, thetaRange*pi/180, phiRange*pi/180, 'Verbose',2,'Outfile','nf2ff_3D.h5'); figure plotFF3D(nf2ff); % plot liear 3D far field %% E_far_normalized = nf2ff.E_norm{1}/max(nf2ff.E_norm{1}(:)); DumpFF2VTK([Sim_Path '/Conical_Horn_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,'scale',1e-3);