/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "operator_ext_lorentzmaterial.h"
#include "engine_ext_lorentzmaterial.h"
#include "operator_ext_cylinder.h"
#include "../operator_cylinder.h"
#include "CSPropLorentzMaterial.h"
#include "CSPropDebyeMaterial.h"
Operator_Ext_LorentzMaterial::Operator_Ext_LorentzMaterial(Operator* op) : Operator_Ext_Dispersive(op)
{
v_int_ADE = NULL;
v_ext_ADE = NULL;
i_int_ADE = NULL;
i_ext_ADE = NULL;
v_Lor_ADE = NULL;
i_Lor_ADE = NULL;
m_curr_Lor_ADE_On = NULL;
m_curr_Lor_ADE_On = NULL;
}
Operator_Ext_LorentzMaterial::Operator_Ext_LorentzMaterial(Operator* op, Operator_Ext_LorentzMaterial* op_ext) : Operator_Ext_Dispersive(op,op_ext)
{
v_int_ADE = NULL;
v_ext_ADE = NULL;
i_int_ADE = NULL;
i_ext_ADE = NULL;
v_Lor_ADE = NULL;
i_Lor_ADE = NULL;
m_curr_Lor_ADE_On = NULL;
m_curr_Lor_ADE_On = NULL;
}
Operator_Ext_LorentzMaterial::~Operator_Ext_LorentzMaterial()
{
for (int i=0;i(this)==NULL)
return NULL;
return new Operator_Ext_LorentzMaterial(op, this);
}
bool Operator_Ext_LorentzMaterial::BuildExtension()
{
double dT = m_Op->GetTimestep();
unsigned int pos[] = {0,0,0};
double coord[3];
unsigned int numLines[3] = {m_Op->GetNumberOfLines(0,true),m_Op->GetNumberOfLines(1,true),m_Op->GetNumberOfLines(2,true)};
CSPropLorentzMaterial* mat = NULL;
CSPropDebyeMaterial* debye_mat = NULL;
bool warn_once = true;
bool b_pos_on;
vector v_pos[3];
// drude material parameter
double w_plasma,t_relax;
double L_D[3], C_D[3];
double R_D[3], G_D[3];
vector v_int[3];
vector v_ext[3];
vector i_int[3];
vector i_ext[3];
//additional Dorentz material parameter
double w_Lor_Pol;
double C_L[3];
double L_L[3];
vector v_Lor[3];
vector i_Lor[3];
m_Order = 0;
vector LD_props = m_Op->CSX->GetPropertyByType(CSProperties::LORENTZMATERIAL);
for (size_t n=0;n(LD_props.at(n));
if (LorMat==NULL)
return false; //sanity check, this should not happen
if (LorMat->GetDispersionOrder()>m_Order)
m_Order=LorMat->GetDispersionOrder();
}
LD_props = m_Op->CSX->GetPropertyByType(CSProperties::DEBYEMATERIAL);
for (size_t n=0;n(LD_props.at(n));
if (DebyeMat==NULL)
return false; //sanity check, this should not happen
if (DebyeMat->GetDispersionOrder()>m_Order)
m_Order=DebyeMat->GetDispersionOrder();
}
m_LM_pos = new unsigned int**[m_Order];
m_volt_ADE_On = new bool[m_Order];
m_curr_ADE_On = new bool[m_Order];
m_volt_Lor_ADE_On = new bool[m_Order];
m_curr_Lor_ADE_On = new bool[m_Order];
v_int_ADE = new FDTD_FLOAT**[m_Order];
v_ext_ADE = new FDTD_FLOAT**[m_Order];
i_int_ADE = new FDTD_FLOAT**[m_Order];
i_ext_ADE = new FDTD_FLOAT**[m_Order];
v_Lor_ADE = new FDTD_FLOAT**[m_Order];
i_Lor_ADE = new FDTD_FLOAT**[m_Order];
for (int order=0;order vPrims = m_Op->GetPrimitivesBoundBox(pos[0], pos[1], -1, (CSProperties::PropertyType)(CSProperties::MATERIAL | CSProperties::METAL));
for (pos[2]=0; pos[2]MainOp->SetPos(pos[0],pos[1],pos[2]);
//calc epsilon lorentz material
b_pos_on = false;
for (int n=0; n<3; ++n)
{
L_D[n]=0;
R_D[n]=0;
C_L[n]=0;
if (m_Op->GetYeeCoords(n,pos,coord,false)==false)
continue;
if (m_CC_R0_included && (n==2) && (pos[0]==0))
coord[1] = m_Op->GetDiscLine(1,0);
if (m_Op->GetVI(n,pos[0],pos[1],pos[2])==0)
continue;
// CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::METAL | CSProperties::MATERIAL), true);
CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord, vPrims, true);
if(prop==NULL) continue;
if ((mat = prop->ToLorentzMaterial()))
{
w_plasma = mat->GetEpsPlasmaFreqWeighted(order,n,coord) * 2 * PI;
if ((w_plasma>0) && (m_Op->EC_C[n][index]>0))
{
b_pos_on = true;
m_volt_ADE_On[order] = true;
L_D[n] = 1/(w_plasma*w_plasma*m_Op->EC_C[n][index]);
}
t_relax = mat->GetEpsRelaxTimeWeighted(order,n,coord);
if ((t_relax>0) && m_volt_ADE_On[order])
{
R_D[n] = L_D[n]/t_relax;
}
w_Lor_Pol = mat->GetEpsLorPoleFreqWeighted(order,n,coord) * 2 * PI;
if ((w_Lor_Pol>0) && (L_D[n]>0))
{
m_volt_Lor_ADE_On[order] = true;
C_L[n] = 1/(w_Lor_Pol*w_Lor_Pol*L_D[n]);
}
}
if ((debye_mat = prop->ToDebyeMaterial()))
{
C_L[n] = 8.85418781762e-12*debye_mat->GetEpsDeltaWeighted(order,n,coord) * m_Op->GetEdgeArea(n, pos) / m_Op->GetEdgeLength(n,pos);
t_relax = debye_mat->GetEpsRelaxTimeWeighted(order,n,coord);
if ((t_relax<2.0*dT) && warn_once)
{
warn_once = false;
cerr << "Operator_Ext_LorentzMaterial::BuildExtension(): Warning, debye relaxation time is to small, skipping..." << endl;
}
if ((C_L[n]>0) && (t_relax>0) && (t_relax>2.0*dT))
{
R_D[n] = t_relax/C_L[n];
b_pos_on = true;
m_volt_ADE_On[order] = true;
m_volt_Lor_ADE_On[order] = true;
}
}
}
for (int n=0; n<3; ++n)
{
C_D[n]=0;
G_D[n]=0;
L_L[n]=0;
if (m_Op->GetYeeCoords(n,pos,coord,true)==false)
continue;
if (m_Op->GetIV(n,pos[0],pos[1],pos[2])==0)
continue;
// CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord,(CSProperties::PropertyType)(CSProperties::METAL | CSProperties::MATERIAL), true);
CSProperties* prop = m_Op->GetGeometryCSX()->GetPropertyByCoordPriority(coord, vPrims, true);
if(prop==NULL) continue;
if ((mat = prop->ToLorentzMaterial()))
{
w_plasma = mat->GetMuePlasmaFreqWeighted(order,n,coord) * 2 * PI;
if ((w_plasma>0) && (m_Op->EC_L[n][index]>0))
{
b_pos_on = true;
m_curr_ADE_On[order] = true;
C_D[n] = 1/(w_plasma*w_plasma*m_Op->EC_L[n][index]);
}
t_relax = mat->GetMueRelaxTimeWeighted(order,n,coord);
if ((t_relax>0) && m_curr_ADE_On[order])
{
G_D[n] = C_D[n]/t_relax;
}
w_Lor_Pol = mat->GetMueLorPoleFreqWeighted(order,n,coord) * 2 * PI;
if ((w_Lor_Pol>0) && (C_D[n]>0))
{
m_curr_Lor_ADE_On[order] = true;
L_L[n] = 1/(w_Lor_Pol*w_Lor_Pol*C_D[n]);
}
}
}
if (b_pos_on) //this position has active drude material
{
for (unsigned int n=0; n<3; ++n)
{
v_pos[n].push_back(pos[n]);
if (L_D[n]>0)
{
v_int[n].push_back((2.0*L_D[n]-dT*R_D[n])/(2.0*L_D[n]+dT*R_D[n]));
// check for r==0 in clyindrical coords and get special VI cooefficient
if (m_CC_R0_included && n==2 && pos[0]==0)
v_ext[n].push_back(dT/(L_D[n]+dT*R_D[n]/2.0)*m_Op_Cyl->m_Cyl_Ext->vi_R0[pos[2]]);
else
v_ext[n].push_back(dT/(L_D[n]+dT*R_D[n]/2.0)*m_Op->GetVI(n,pos[0],pos[1],pos[2]));
}
else if ((R_D[n]>0) && (C_L[n]>0))
{
v_int[n].push_back((2.0*dT-R_D[n]*C_L[n])/(C_L[n]*R_D[n]));
v_ext[n].push_back(2.0/R_D[n]*m_Op->GetVI(n,pos[0],pos[1],pos[2]));
}
else
{
v_int[n].push_back(1);
v_ext[n].push_back(0);
}
if (C_D[n]>0)
{
i_int[n].push_back((2.0*C_D[n]-dT*G_D[n])/(2.0*C_D[n]+dT*G_D[n]));
i_ext[n].push_back(dT/(C_D[n]+dT*G_D[n]/2.0)*m_Op->GetIV(n,pos[0],pos[1],pos[2]));
}
else
{
i_int[n].push_back(1);
i_ext[n].push_back(0);
}
if (C_L[n]>0)
v_Lor[n].push_back(dT/C_L[n]/m_Op->GetVI(n,pos[0],pos[1],pos[2]));
else
v_Lor[n].push_back(0);
if (L_L[n]>0)
i_Lor[n].push_back(dT/L_L[n]/m_Op->GetIV(n,pos[0],pos[1],pos[2]));
else
i_Lor[n].push_back(0);
}
}
}
}
}
//copy all vectors into the array's
m_LM_Count.push_back(v_pos[0].size());
m_LM_pos[order] = new unsigned int*[3];
if (m_volt_ADE_On[order])
{
v_int_ADE[order] = new FDTD_FLOAT*[3];
v_ext_ADE[order] = new FDTD_FLOAT*[3];
}
else
{
v_int_ADE[order] = NULL;
v_ext_ADE[order] = NULL;
}
if (m_curr_ADE_On[order])
{
i_int_ADE[order] = new FDTD_FLOAT*[3];
i_ext_ADE[order] = new FDTD_FLOAT*[3];
}
else
{
i_int_ADE[order] = NULL;
i_ext_ADE[order] = NULL;
}
if (m_volt_Lor_ADE_On[order])
v_Lor_ADE[order] = new FDTD_FLOAT*[3];
else
v_Lor_ADE[order] = NULL;
if (m_curr_Lor_ADE_On[order])
i_Lor_ADE[order] = new FDTD_FLOAT*[3];
else
i_Lor_ADE[order] = NULL;
for (int n=0; n<3; ++n)
{
m_LM_pos[order][n] = new unsigned int[m_LM_Count.at(order)];
for (unsigned int i=0; i