function [CSX,port] = AddMSLPort( CSX, prio, portnr, materialname, start, stop, dir, evec, varargin ) % [CSX,port] = AddMSLPort( CSX, prio, portnr, materialname, start, stop, dir, evec, varargin ) % % CSX: CSX-object created by InitCSX() % prio: priority for excitation and probe boxes % portnr: (integer) number of the port % materialname: property for the MSL (created by AddMetal()) % start: 3D start rowvector for port definition % stop: 3D end rowvector for port definition % dir: direction of wave propagation (choices: 0 1 2) % evec: excitation vector, which defines the direction of the e-field (must be the same as used in AddExcitation()) % % variable input: % 'ExcitePort' necessary excitation name to make the port an active feeding port % 'FeedShift' shift to port from start by a given distance in drawing % units. Default is 0. Only active if 'ExcitePort' is set! % 'Feed_R' Specifiy a lumped port resistance. Default is no lumped % port resistance --> port has to end in an ABC. % Only active if 'ExcitePort' is set! % 'MeasPlaneShift' Shift the measurement plane from start t a given distance % in drawing units. Default is the middle of start/stop. % Only active if 'ExcitePort' is set! % % the mesh must be already initialized % % example: % start = [0 0 height]; % stop = [length width 0]; % CSX = AddMetal( CSX, 'metal' ); %create a PEC called 'metal' % [CSX,port] = AddMSLPort( CSX, 0, 1, 'metal', start, stop, ... % 0, [0 0 -1] , 'ExcitePort', 'excite', 'Feed_R', 50 ) % % this defines a MSL in x-direction (dir=0) with an e-field excitation % in -z-direction (evec=[0 0 -1]) the excitation is placed at x=start(1); % the wave travels towards x=stop(1) the MSL-metal is created % in xy-plane at z=start(3) % % Sebastian Held May 13 2010 % Thorsten Liebig Sept 16 2011 % % See also InitCSX AddMetal AddMaterial AddExcitation calcPort %% validate arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %check mesh if ~isfield(CSX,'RectilinearGrid') error 'mesh needs to be defined! Use DefineRectGrid() first!'; if (~isfield(CSX.RectilinearGrid,'XLines') || ~isfield(CSX.RectilinearGrid,'YLines') || ~isfield(CSX.RectilinearGrid,'ZLines')) error 'mesh needs to be defined! Use DefineRectGrid() first!'; end end % check dir if ~( (dir >= 0) && (dir <= 2) ) error 'dir must have exactly one component ~= 0' end % check evec if ~(evec(1) == evec(2) == 0) && ~(evec(1) == evec(3) == 0) && ~(evec(2) == evec(3) == 0) || (sum(evec) == 0) error 'evec must have exactly one component ~= 0' end evec0 = evec ./ sum(evec); % evec0 is a unit vector %% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_conv_arg = 8; % number of conventional arguments %set defaults feed_shift = 0; feed_R = 0; excitename = ''; measplanepos = nan; if (nargin>n_conv_arg) for n=1:2:(nargin-n_conv_arg) if (strcmp(varargin{n},'FeedShift')==1); feed_shift = varargin{n+1}; if (numel(feed_shift)>1) error 'FeedShift must be a scalar value' end end if (strcmp(varargin{n},'Feed_R')==1); feed_R = varargin{n+1}; if (numel(feed_shift)>1) error 'Feed_R must be a scalar value' end end if (strcmp(varargin{n},'MeasPlaneShift')==1); measplanepos = varargin{n+1}; if (numel(feed_shift)>1) error 'MeasPlaneShift must be a scalar value' end end if (strcmp(varargin{n},'ExcitePort')==1); excitename = varargin{n+1}; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % normalize start and stop nstart = min( [start;stop] ); nstop = max( [start;stop] ); % determine index (1, 2 or 3) of propagation (length of MSL) idx_prop = dir + 1; % determine index (1, 2 or 3) of width of MSL dir = [0 0 0]; dir(idx_prop) = 1; idx_width = abs(cross(dir,evec0)) * [1;2;3]; % determine index (1, 2 or 3) of height idx_height = abs(evec0) * [1;2;3]; % direction of propagation if stop(idx_prop)-start(idx_prop) > 0 direction = +1; else direction = -1; end % direction of propagation if stop(idx_height)-start(idx_height) > 0 upsidedown = +1; else upsidedown = -1; end % create the metal/material for the MSL MSL_start = start; MSL_stop = stop; MSL_stop(idx_height) = MSL_start(idx_height); CSX = AddBox( CSX, materialname, prio, MSL_start, MSL_stop ); if isnan(measplanepos) measplanepos = (nstart(idx_prop)+nstop(idx_prop))/2; else measplanepos = start(idx_prop)+direction*measplanepos; end % calculate position of the voltage probes mesh{1} = sort(CSX.RectilinearGrid.XLines); mesh{2} = sort(CSX.RectilinearGrid.YLines); mesh{3} = sort(CSX.RectilinearGrid.ZLines); meshlines = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), measplanepos, 'nearest' ); meshlines = mesh{idx_prop}(meshlines-1:meshlines+1); % get three lines (approx. at center) if direction == -1 meshlines = fliplr(meshlines); end MSL_w2 = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), (nstart(idx_width)+nstop(idx_width))/2, 'nearest' ); MSL_w2 = mesh{idx_width}(MSL_w2); % get e-line at center of MSL (MSL_width/2) v1_start(idx_prop) = meshlines(1); v1_start(idx_width) = MSL_w2; v1_start(idx_height) = start(idx_height); v1_stop = v1_start; v1_stop(idx_height) = stop(idx_height); v2_start = v1_start; v2_stop = v1_stop; v2_start(idx_prop) = meshlines(2); v2_stop(idx_prop) = meshlines(2); v3_start = v2_start; v3_stop = v2_stop; v3_start(idx_prop) = meshlines(3); v3_stop(idx_prop) = meshlines(3); % calculate position of the current probes idx = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), nstart(idx_width), 'nearest' ); i1_start(idx_width) = mesh{idx_width}(idx) - diff(mesh{idx_width}(idx-1:idx))/2; idx = interp1( mesh{idx_height}, 1:numel(mesh{idx_height}), start(idx_height), 'nearest' ); i1_start(idx_height) = mesh{idx_height}(idx-1) - diff(mesh{idx_height}(idx-2:idx-1))/2; i1_stop(idx_height) = mesh{idx_height}(idx+1) + diff(mesh{idx_height}(idx+1:idx+2))/2; i1_start(idx_prop) = sum(meshlines(1:2))/2; i1_stop(idx_prop) = i1_start(idx_prop); idx = interp1( mesh{idx_width}, 1:numel(mesh{idx_width}), nstop(idx_width), 'nearest' ); i1_stop(idx_width) = mesh{idx_width}(idx) + diff(mesh{idx_width}(idx:idx+1))/2; i2_start = i1_start; i2_stop = i1_stop; i2_start(idx_prop) = sum(meshlines(2:3))/2; i2_stop(idx_prop) = i2_start(idx_prop); % create the probes name = ['port_ut' num2str(portnr) 'A']; % weight = sign(stop(idx_height)-start(idx_height)) weight = upsidedown; CSX = AddProbe( CSX, name, 0, weight ); CSX = AddBox( CSX, name, prio, v1_start, v1_stop ); name = ['port_ut' num2str(portnr) 'B']; CSX = AddProbe( CSX, name, 0, weight ); CSX = AddBox( CSX, name, prio, v2_start, v2_stop ); name = ['port_ut' num2str(portnr) 'C']; CSX = AddProbe( CSX, name, 0, weight ); CSX = AddBox( CSX, name, prio, v3_start, v3_stop ); name = ['port_it' num2str(portnr) 'A']; weight = direction; CSX = AddProbe( CSX, name, 1, weight ); CSX = AddBox( CSX, name, prio, i1_start, i1_stop ); name = ['port_it' num2str(portnr) 'B']; CSX = AddProbe( CSX, name, 1, weight ); CSX = AddBox( CSX, name, prio, i2_start, i2_stop ); % create port structure port.LengthScale = 1; if ((CSX.ATTRIBUTE.CoordSystem==1) && (idx_prop==2)) port.LengthScale = MSL_stop(idx_height); end port.nr = portnr; port.drawingunit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit; port.v_delta = diff(meshlines)*port.LengthScale; port.i_delta = diff( meshlines(1:end-1) + diff(meshlines)/2 )*port.LengthScale; port.direction = direction; port.excite = 0; port.measplanepos = abs(v2_start(idx_prop) - start(idx_prop))*port.LengthScale; % port % create excitation % excitation of this port is enabled port.excite = 1; meshline = interp1( mesh{idx_prop}, 1:numel(mesh{idx_prop}), start(idx_prop) + feed_shift*direction, 'nearest' ); ex_start(idx_prop) = mesh{idx_prop}(meshline) ; ex_start(idx_width) = nstart(idx_width); ex_start(idx_height) = nstart(idx_height); ex_stop(idx_prop) = ex_start(idx_prop); ex_stop(idx_width) = nstop(idx_width); ex_stop(idx_height) = nstop(idx_height); if ~isempty(excitename) CSX = AddExcitation( CSX, excitename, 0, evec ); CSX = AddBox( CSX, excitename, prio, ex_start, ex_stop ); end if feed_R > 0 CSX = AddLumpedElement( CSX, [excitename '_R'], idx_height-1, 'R', feed_R ); CSX = AddBox( CSX, [excitename '_R'], prio, ex_start, ex_stop ); port.Feed_R = feed_R; end end