function [port] = calcPort( port, SimDir, f, varargin) % [port] = calcPort( port, SimDir, f, [ref_ZL], [ref_shift]) % % Calculate voltages and currents, the propagation constant beta % and the characteristic impedance ZL of the given port. % The port has to be created by e.g. AddMSLPort(). % % input: % port: return value of AddMSLPort() % SimDir: directory, where the simulation files are % f: frequency vector for DFT % % variable input: % 'RefImpedance': use a given reference impedance to calculate inc and % ref voltages and currents % default is given port or calculated line impedance % 'RefPlaneShift': use a given reference plane shift from port beginning % for a desired phase correction % default is the measurement plane % % output: % port.f the given frequency fector % port.uf.tot/inc/ref total, incoming and reflected voltage % port.if.tot/inc/ref total, incoming and reflected current % port.beta: propagation constant % port.ZL: characteristic line impedance % % example: % port{1} = calcPort( port{1}, Sim_Path, f, 'RefImpedance', 50); % or % % reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations", % IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996 % % openEMS matlab interface % ----------------------- % (C) 2010 Sebastian Held % See also AddMSLPort %DEBUG % save('/tmp/test.mat', 'port', 'SimDir', 'f', 'nargin' ) % load('/tmp/test.mat') % check if abs((port.v_delta(1) - port.v_delta(2)) / port.v_delta(1))>1e-6 warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' ); end %% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n_conv_arg = 3; % number of conventional arguments %set defaults ref_ZL = 0; ref_shift = nan; if (nargin>n_conv_arg) for n=1:2:(nargin-n_conv_arg) if (strcmp(varargin{n},'RefPlaneShift')==1); ref_shift = varargin{n+1}; end if (strcmp(varargin{n},'RefImpedance')==1); ref_ZL = varargin{n+1}; end end end % read time domain data filename = ['port_ut' num2str(port.nr)]; U = ReadUI( {[filename 'A'],[filename 'B'],[filename 'C']}, SimDir, f ); filename = ['port_it' num2str(port.nr)]; I = ReadUI( {[filename 'A'],[filename 'B']}, SimDir, f ); % store the original frequency domain waveforms u_f = U.FD{2}.val; i_f = (I.FD{1}.val + I.FD{2}.val) / 2; % shift to same position as v f = U.FD{2}.f; Et = U.FD{2}.val; dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(port.v_delta(1:2))) * port.drawingunit); Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(port.i_delta(1)) * port.drawingunit); beta = sqrt( - dEt .* dHt ./ (Ht .* Et) ); beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper) % determine ZL ZL = sqrt(Et .* dEt ./ (Ht .* dHt)); % reference plane shift (lossless) if ~isnan(ref_shift) % renormalize the shift to the measurement plane ref_shift = ref_shift - port.measplanepos * port.drawingunit; % ref_shift = ref_shift * port.drawingunit; % store the shifted frequency domain waveforms phase = real(beta)*ref_shift; U.FD{1}.val = u_f .* cos(-phase) + 1i * i_f.*ZL .* sin(-phase); I.FD{1}.val = i_f .* cos(-phase) + 1i * u_f./ZL .* sin(-phase); u_f = U.FD{1}.val; i_f = I.FD{1}.val; end if (ref_ZL == 0) if isfield(port,'Feed_R') ref_ZL = port.Feed_R; else ref_ZL = ZL; end end port.ZL = ZL; port.beta = beta; port.f = f; uf_inc = 0.5 * ( u_f + i_f .* ref_ZL ); if_inc = 0.5 * ( i_f + u_f ./ ref_ZL ); uf_ref = u_f - uf_inc; if_ref = if_inc - i_f; port.uf.tot = u_f; port.uf.inc = uf_inc; port.uf.ref = uf_ref; port.if.tot = i_f; port.if.inc = if_inc; port.if.ref = if_ref; port.raw.U = U; port.raw.I = I;