function [delay, fidelity, nf2ff_out] = DelayFidelity(nf2ff, port, path, weight_theta, weight_phi, theta, phi, f_0, f_c, varargin) % [delay, fidelity] = DelayFidelity(nf2ff, port, path, weight_theta, weight_phi, theta, phi, f_lo, f_hi, varargin) % % % This function calculates the time delay from the source port to the phase center of the antenna and the fidelity. % The fidelity is the similarity between the excitation pulse and the radiated pulse (normalized scalar product). % The resolution of the delay will be equal to or better than ((f_0 + f_c)*Oversampling)^-1 when using Gaussian excitation. % Oversampling is an input parameter to InitFDTD. The rows of delay and fidelity correspond to theta and the columns to phi. % % input: % nf2ff: return value of CreateNF2FFBox. % port: return value of AddLumpedPort % path: path of the simulation results. % weight_theta: weight of the E_theta component % weight_phi: weight of the E_phi component % -> with both (possibly complex) parameters any polarization can be examined % theta: theta values to be simulated % phi: phi values to be simulated % f_0: center frequency of SetGaussExcite % f_c: cutoff frequency of SetGaussExcite % % variable input: % 'Center': phase center of the antenna for CalcNF2FF % 'Radius': radius for CalcNF2FF % 'Mode': mode CalcNF2FF % % example: % theta = [-180:10:180] * pi / 180; % phi = [0, 90] * pi / 180; % % use circular right handed polarization % [delay, fidelity] = DelayFidelity2(nf2ff, port, Sim_Path, -1i, 1, theta, phi, f_0, f_c, 'Mode', 1); % figure % polar(theta.', delay(:,1) * 3e11); % delay in mm % figure % polar(theta', (fidelity(:,1)-0.95)/0.05); % last 5 percent of fidelity % % Author: Georg Michel C0 = 299792458; center = [0, 0, 0]; radius = 1; nf2ff_mode = 0; for n=1:2:numel(varargin) if (strcmp(varargin{n},'Center')==1); center = varargin{n+1}; elseif (strcmp(varargin{n},'Radius')==1); radius = varargin{n+1}; elseif (strcmp(varargin{n},'Mode')==1); nf2ff_mode = varargin{n+1}; end end port_ut = load(fullfile(path, port.U_filename)); port_it = load(fullfile(path, port.I_filename)); dt = port_ut(2,1) - port_ut(1,1); fftsize = 2^(nextpow2(size(port_ut)(1)) + 1); df = 1 / (dt * fftsize); uport = fft(port_ut(:, 2), fftsize)(1:fftsize/2+1); iport = fft(port_it(:, 2), fftsize)(1:fftsize/2+1); fport = df * (0:fftsize/2); f_ind = find(fport > (f_0 - f_c ) & fport < (f_0 + f_c)); disp(["frequencies: ", num2str(numel(f_ind))]); exc_f = uport.' + iport.' * port.Feed_R; %excitation in freq domain exc_f(!f_ind) = 0; exc_f /= sqrt(exc_f * exc_f'); % normalization (transposing also conjugates) nf2ff = CalcNF2FF(nf2ff, path, fport(f_ind), theta, phi, ... 'Center', center, 'Radius', radius, 'Mode', nf2ff_mode); radfield = weight_theta * cell2mat(nf2ff.E_theta) + weight_phi * cell2mat(nf2ff.E_phi); % rows: theta(f1), columns: phi(f1), phi(f2), ...phi(fn) radfield = reshape(radfield, [length(nf2ff.theta), length(nf2ff.phi), length(nf2ff.freq)]); correction = reshape(exp(-2i*pi*nf2ff.r/C0*nf2ff.freq), 1,1,numel(nf2ff.freq)); %dimensions: theta, phi, frequencies radfield = radfield./correction; % correct for radius delay % normalize radfield radnorm = sqrt(dot(radfield, radfield, 3)); radfield ./= radnorm; %initialize radiated field in fully populated frequency domain rad_f = zeros([numel(nf2ff.theta), numel(nf2ff.phi), numel(fport)]); rad_f(:, :, f_ind) = radfield; % assign selected frequencies exc_f = reshape(exc_f, [1,1,numel(exc_f)]); %make exc_f confomant with rad_f cr_f = rad_f .* conj(exc_f); % calculate cross correlation % calculate the cross correlation in time domain (analytic signal) cr = ifft(cr_f(:, :, 1:end-1), [], 3) * (numel(fport) -1); % twice the FFT normalization (sqrt^2) because product of two normalized functions %search for the maxiumum of the envelope [fidelity, delay_ind] = max(abs(cr), [], 3); delay = (delay_ind - 1) * dt * 2; % double time step because of single-sided FFT nf2ff_out = nf2ff; %possibly needed for plotting the far field and other things disp(["DelayFidelity: delay resolution = ", num2str(dt*2e9), "ns"]); return;