function [CSX,port] = AddCurvePort( CSX, portnr, R, start, stop, excitename ) %[CSX,port] = AddCurvePort( CSX, portnr, materialname, start, stop [, excitename] ) % % Creates a curve port (1-dimensional). % The mesh must already be initialized. % % input: % CSX: CSX-object created by InitCSX() % portnr: (integer) number of the port % R: internal resistance of the port % start: 3D start rowvector for port definition % stop: 3D end rowvector for port definition % excitename (optional): if specified, the port will be switched on (see AddExcitation()) % % output: % CSX: % port: % % example: % start = [0 0 0]; stop = [0 0 12]; % this defines a lumped port in z-direction % the excitation/probe is placed between start(1) and stop(1) % % (C) 2010 Sebastian Held % See also InitCSX AddExcitation % make row vector start = reshape( start, 1, [] ); stop = reshape( stop , 1, [] ); % get grid mesh{1} = sort(unique(CSX.RectilinearGrid.XLines)); mesh{2} = sort(unique(CSX.RectilinearGrid.YLines)); mesh{3} = sort(unique(CSX.RectilinearGrid.ZLines)); unit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit; % find port direction dir = abs(stop - start); [dummy,dir] = max(dir); % other directions dir1 = mod(dir,3)+1; dir2 = mod(dir+1,3)+1; % normalize start and stop if start(dir) < stop(dir) nstart = start; nstop = stop; else nstart = stop; nstop = start; end % snap to grid start_idx = zeros(1,3); stop_idx = zeros(1,3); for n=1:3 start_idx(n) = interp1( mesh{n}, 1:numel(mesh{n}), nstart(n), 'nearest' ); stop_idx(n) = interp1( mesh{n}, 1:numel(mesh{n}), nstop(n), 'nearest' ); end % calculate position port_start_idx = start_idx; port_stop_idx = stop_idx; if abs(start_idx(dir) - stop_idx(dir)) ~= 1 % calc port position idx = interp1( mesh{dir}, 1:numel(mesh{dir}), (nstart(dir)+nstop(dir))/2, 'nearest' ); idx1 = interp1( mesh{dir1}, 1:numel(mesh{dir1}), (nstart(dir1)+nstop(dir1))/2, 'nearest' ); idx2 = interp1( mesh{dir2}, 1:numel(mesh{dir2}), (nstart(dir2)+nstop(dir2))/2, 'nearest' ); port_start_idx(dir) = idx; port_start_idx(dir1) = idx1; port_start_idx(dir2) = idx2; port_stop_idx(dir) = idx+1; port_stop_idx(dir1) = idx1; port_stop_idx(dir2) = idx2; metalname = ['port' num2str(portnr) '_PEC']; CSX = AddMetal( CSX, metalname ); CSX = AddCurve( CSX, metalname, 999, [nstart.' [mesh{1}(port_start_idx(1));mesh{2}(port_start_idx(2));mesh{3}(port_start_idx(3))]] ); CSX = AddCurve( CSX, metalname, 999, [nstop.' [mesh{1}(port_stop_idx(1));mesh{2}(port_stop_idx(2));mesh{3}(port_stop_idx(3))]] ); end % calculate position of resistive material delta1_n = mesh{dir1}(port_start_idx(dir1)) - mesh{dir1}(port_start_idx(dir1)-1); delta1_p = mesh{dir1}(port_start_idx(dir1)+1) - mesh{dir1}(port_start_idx(dir1)); delta2_n = mesh{dir2}(port_start_idx(dir2)) - mesh{dir2}(port_start_idx(dir2)-1); delta2_p = mesh{dir2}(port_start_idx(dir2)+1) - mesh{dir2}(port_start_idx(dir2)); m_start = zeros(1,3); m_stop = zeros(1,3); for n=1:3 m_start(n) = mesh{n}(port_start_idx(n)); m_stop(n) = mesh{n}(port_stop_idx(n)); end m_start(dir1) = m_start(dir1) - delta1_n/2; m_stop(dir1) = m_stop(dir1) + delta1_p/2; m_start(dir2) = m_start(dir2) - delta2_n/2; m_stop(dir2) = m_stop(dir2) + delta2_p/2; % calculate kappa l = abs((m_stop(dir) - m_start(dir))) * unit; % length of the "resistor" A = (m_stop(dir1) - m_start(dir1)) * (m_stop(dir2) - m_start(dir2)) * unit^2; % area of the "resistor" A = abs(A); kappa = l/A / R; % [kappa] = S/m materialname = ['port' num2str(portnr) '_sheet_resistance']; CSX = AddMaterial( CSX, materialname );%, 'Isotropy', 0 ); % kappa_cell = {0,0,0}; % kappa_cell{dir} = kappa; kappa_cell = kappa; CSX = SetMaterialProperty( CSX, materialname, 'Kappa', kappa_cell ); CSX = AddBox( CSX, materialname, 999, m_start, m_stop ); % calculate position of the voltage probe v_start = [mesh{1}(port_start_idx(1)), mesh{2}(port_start_idx(2)), mesh{3}(port_start_idx(3))]; v_stop = [mesh{1}(port_stop_idx(1)), mesh{2}(port_stop_idx(2)), mesh{3}(port_stop_idx(3))]; % calculate position of the current probe i_start = m_start; i_stop = m_stop; i_start(dir) = (i_start(dir)+i_stop(dir))/2; i_stop(dir) = i_start(dir); % create the probes name = ['port_ut' num2str(portnr)]; weight = -1; CSX = AddProbe( CSX, name, 0, weight ); CSX = AddBox( CSX, name, 999, v_start, v_stop ); name = ['port_it' num2str(portnr)]; weight = 1; CSX = AddProbe( CSX, name, 1, weight ); CSX = AddBox( CSX, name, 999, i_start, i_stop ); % create port structure port.nr = portnr; port.drawingunit = unit; % port.start = start; % port.stop = stop; % port.v_start = v_start; % port.v_stop = v_stop; % port.i_start = i_start; % port.i_stop = i_stop; % port.dir = dir; % port.direction = direction; % port.idx_cal = idx_cal; % port.idx1 = idx1; % port.idx1 = idx1; port.excite = 0; % create excitation if (nargin >= 6) && ~isempty(excitename) % excitation of this port is enabled port.excite = 1; e_start = v_start; e_stop = v_stop; CSX = AddExcitation( CSX, excitename, 0, start_idx ~= stop_idx ); CSX = AddBox( CSX, excitename, 999, e_start, e_stop ); end