% % Tutorials / CRLH_Extraction % % Description at: % http://openems.de/index.php/Tutorial:_CRLH_Extraction % % Tested with % - Matlab 2011a / Octave 4.0 % - openEMS v0.0.33 % % (C) 2011-2015 Thorsten Liebig close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% physical_constants; unit = 1e-6; % specify everything in um feed_length = 30000; substrate_thickness = [1524 101 254]; substrate_epsr = [3.48 3.48 3.48]; CRLH.LL = 14e3; %CRLH totel (line) length CRLH.LW = 4e3; %CRLH unit cell width (without the stubs) CRLH.GLB = 1950; %CRLH gap width bottom layer CRLH.GLT = 4700; %CRLH gap width top layer CRLH.SL = 7800; %CRLH stub length (bottom layer, both sides) CRLH.SW = 1000; %CRLH stub width (bottom layer, both sides) CRLH.VR = 250; %CRLH via hole radius (stub -> ground) CRLH.TopSig = sum(substrate_thickness); %top layer height CRLH.BottomSig = CRLH.TopSig - substrate_thickness(end); %bottom layer height % frequency range of interest f_start = 0.8e9; f_stop = 6e9; %% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitFDTD(); FDTD = SetGaussExcite( FDTD, (f_start+f_stop)/2, (f_stop-f_start)/2 ); BC = {'PML_8' 'PML_8' 'MUR' 'MUR' 'PEC' 'PML_8'}; FDTD = SetBoundaryCond( FDTD, BC ); %% Setup a basic mesh and create the CRLH unit cell CSX = InitCSX(); resolution = c0/(f_stop*sqrt(max(substrate_epsr)))/unit /30; % resolution of lambda/30 mesh.x = [-feed_length-CRLH.LL/2 0 feed_length+CRLH.LL/2]; mesh.y = [-30000 0 30000]; substratelines = cumsum(substrate_thickness); mesh.z = [0 cumsum(substrate_thickness) linspace(substratelines(end-1),substratelines(end),4) 20000]; % create the CRLH unit cell (will define additional fixed mesh lines) [CSX mesh] = CreateCRLH(CSX, mesh, CRLH, resolution/4); % Smooth the given mesh mesh = SmoothMesh(mesh, resolution, 1.5, 'algorithm',[1 3]); CSX = DefineRectGrid( CSX, unit, mesh ); %% Setup the substrate layer substratelines = [0 substratelines]; for n=1:numel(substrate_thickness) CSX = AddMaterial( CSX, ['substrate' int2str(n)] ); CSX = SetMaterialProperty( CSX, ['substrate' int2str(n)], 'Epsilon', substrate_epsr(n) ); start = [mesh.x(1), mesh.y(1), substratelines(n)]; stop = [mesh.x(end), mesh.y(end), substratelines(n+1)]; CSX = AddBox( CSX, ['substrate' int2str(n)], 0, start, stop ); end %% add the feeding MSL ports CSX = AddMetal( CSX, 'PEC' ); portstart = [ mesh.x(1) , -CRLH.LW/2, substratelines(end)]; portstop = [ -CRLH.LL/2, CRLH.LW/2, 0]; [CSX,port{1}] = AddMSLPort( CSX, 999, 1, 'PEC', portstart, portstop, 0, [0 0 -1], 'ExcitePort', true, 'FeedShift', 10*resolution(1), 'MeasPlaneShift', feed_length/2); portstart = [ mesh.x(end) , -CRLH.LW/2, substratelines(end)]; portstop = [ +CRLH.LL/2, CRLH.LW/2, 0]; [CSX,port{2}] = AddMSLPort( CSX, 999, 2, 'PEC', portstart, portstop, 0, [0 0 -1], 'MeasPlaneShift', feed_length/2 ); %% write/show/run the openEMS compatible xml-file Sim_Path = 'tmp'; Sim_CSX = 'CRLH.xml'; [status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory [status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); RunOpenEMS( Sim_Path, Sim_CSX ); %% post-processing close all f = linspace( f_start, f_stop, 1601 ); port = calcPort( port, Sim_Path, f, 'RefPlaneShift', feed_length); s11 = port{1}.uf.ref./ port{1}.uf.inc; s21 = port{2}.uf.ref./ port{1}.uf.inc; plot(f/1e9,20*log10(abs(s11)),'k-','LineWidth',2); hold on; grid on; plot(f/1e9,20*log10(abs(s21)),'r--','LineWidth',2); l = legend('S_{11}','S_{21}','Location','Best'); set(l,'FontSize',12); ylabel('S-Parameter (dB)','FontSize',12); xlabel('frequency (GHz) \rightarrow','FontSize',12); ylim([-40 2]); %% extract parameter A = ((1+s11).*(1-s11) + s21.*s21)./(2*s21); C = ((1-s11).*(1-s11) - s21.*s21)./(2*s21) ./ port{2}.ZL; Y = C; Z = 2*(A-1)./C; iZ = imag(Z); iY = imag(Y); fse = interp1(iZ,f,0); fsh = interp1(iY,f,0); df = f(2)-f(1); fse_idx = find(f>fse,1); fsh_idx = find(f>fsh,1); LR = 0.5*(iZ(fse_idx)-iZ(fse_idx-1))./(2*pi*df); CL = 1/(2*pi*fse)^2/LR; CR = 0.5*(iY(fsh_idx)-iY(fsh_idx-1))./(2*pi*df); LL = 1/(2*pi*fsh)^2/CR; disp([' Series tank: CL = ' num2str(CL*1e12,3) 'pF; LR = ' num2str(LR*1e9,3) 'nH -> f_se = ' num2str(fse*1e-9,3) 'GHz ']); disp([' Shunt tank: CR = ' num2str(CR*1e12,3) 'pF; LL = ' num2str(LL*1e9,3) 'nH -> f_sh = ' num2str(fsh*1e-9,3) 'GHz ']); %% calculate analytical wave-number of an inf-array of cells w = 2*pi*f; wse = 2*pi*fse; wsh = 2*pi*fsh; beta_calc = real(acos(1-(w.^2-wse^2).*(w.^2-wsh^2)./(2*w.^2/CR/LR))); %% figure beta = -angle(s21)/CRLH.LL/unit; plot(abs(beta)*CRLH.LL*unit/pi,f*1e-9,'k-','LineWidth',2) grid on; hold on; plot(beta_calc/pi,f*1e-9,'c--','LineWidth',2) plot(real(port{2}.beta)*CRLH.LL*unit/pi,f*1e-9,'g-','LineWidth',2) ylim([1 6]) xlabel('|\beta| p / \pi \rightarrow','FontSize',12) ylabel('frequency (GHz) \rightarrow','FontSize',12) l = legend('\beta_{CRLH, 1 cell}','\beta_{CRLH, \infty cells}','\beta_{MSL}','Location','East'); set(l,'FontSize',12);