function [field_i mesh_i] = GetField_Interpolation(field, mesh, lines, varargin) % [field_i mesh_i] = GetField_Interpolation(field, mesh, lines, varargin) % % Get an interpolated field, e.g. read by ReadHDF5Dump % % homogen interpolation given by a 3x1 vector: e.g. [21,1,101] % % abitrary interpolation on a given mesh: % e.g.: mesh_interp{1} = linspace(0, 1,101) * 1e-3; % mesh_interp{2} = linspace(0,0.5, 51) * 1e-3; % mesh_interp{3} = linspace(0,0.2, 21) * 1e-3; % % example: % [field mesh] = ReadHDF5Dump('Et.h5'); % %interpolate on a mesh with 21x21x101 lines % [field_i mesh_i] = GetField_Interpolation(field, mesh, [21 21 101]); % or % [field_i mesh_i] = GetField_Interpolation(field, mesh, mesh_interp); % % %or both steps in one with the same result: % [field_i mesh_i] = ReadHDF5Dump('Et.h5','Interpolation', [21 21 101]); % % openEMS matlab interface % ----------------------- % author: Thorsten Liebig % % See also ReadHDF5Dump ReadHDF5FieldData ReadHDF5Mesh if ((~iscell(lines) && ~isnumeric(lines)) || numel(lines)~=3) error('openEMS:GetField_Interpolation: numLines for interpolation must be a vector...'); end x = mesh.lines{1}; y = mesh.lines{2}; z = mesh.lines{3}; if (isnumeric(lines)) x_i = linspace(x(1),x(end),lines(1)); y_i = linspace(y(1),y(end),lines(2)); z_i = linspace(z(1),z(end),lines(3)); else x_i = lines{1}; y_i = lines{2}; z_i = lines{3}; end field_i = field; mesh_i = mesh; mesh_i.lines{1} = x_i; mesh_i.lines{2} = y_i; mesh_i.lines{3} = z_i; if (isfield(field,'TD')) field_i.TD = interpolate_fields(field.TD,x,y,z, x_i, y_i, z_i); field_i.TD.time = field.TD.time; field_i.TD.names= field.TD.names; end if (isfield(field,'FD')) field_i.FD = interpolate_fields(field.FD,x,y,z, x_i, y_i, z_i); field_i.FD.frequency = field.FD.frequency; field_i.FD.DataType = field.FD.DataType; end return function field_i = interpolate_fields(field, x,y,z, x_i, y_i, z_i) % matlab cannot handle 3D data to be 2D data, workaround for these cases if (numel(x)==1) [Y Z] = ndgrid(y,z); [Y_I Z_I] = ndgrid(y_i,z_i); for n=1:numel(field.values) field_i.values{n}(1,:,:,1) = interpn(Y,Z,squeeze(field.values{n}(1,:,:,1)),Y_I,Z_I); if (size(field.values{n},4)>1) field_i.values{n}(1,:,:,2) = interpn(Y,Z,squeeze(field.values{n}(1,:,:,2)),Y_I,Z_I); field_i.values{n}(1,:,:,3) = interpn(Y,Z,squeeze(field.values{n}(1,:,:,3)),Y_I,Z_I); end end return; end if (numel(y)==1) [X Z] = ndgrid(x,z); [X_I Z_I] = ndgrid(x_i,z_i); for n=1:numel(field.values) field_i.values{n}(:,1,:,1) = interpn(X,Z,squeeze(field.values{n}(:,1,:,1)),X_I,Z_I); if (size(field.values{n},4)>1) field_i.values{n}(:,1,:,2) = interpn(X,Z,squeeze(field.values{n}(:,1,:,2)),X_I,Z_I); field_i.values{n}(:,1,:,3) = interpn(X,Z,squeeze(field.values{n}(:,1,:,3)),X_I,Z_I); end end return; end if (numel(z)==1) [X Y] = ndgrid(x,y); [X_I Y_I] = ndgrid(x_i,y_i); for n=1:numel(field.values) field_i.values{n}(:,:,1,1) = interpn(X,Y,squeeze(field.values{n}(:,:,1,1)),X_I,Y_I); if (size(field.values{n},4)>1) field_i.values{n}(:,:,1,2) = interpn(X,Y,squeeze(field.values{n}(:,:,1,2)),X_I,Y_I); field_i.values{n}(:,:,1,3) = interpn(X,Y,squeeze(field.values{n}(:,:,1,3)),X_I,Y_I); end end return; end %real 3D case [X Y Z] = ndgrid(x,y,z); [X_I Y_I Z_I] = ndgrid(x_i,y_i,z_i); for n=1:numel(field.values) field_i.values{n}(:,:,:,1) = interpn(X,Y,Z,field.values{n}(:,:,:,1),X_I,Y_I,Z_I); if (size(field.values{n},4)>1) field_i.values{n}(:,:,:,2) = interpn(X,Y,Z,field.values{n}(:,:,:,2),X_I,Y_I,Z_I); field_i.values{n}(:,:,:,3) = interpn(X,Y,Z,field.values{n}(:,:,:,3),X_I,Y_I,Z_I); end end