close all clear clc %% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% abs_length = 250; length = 1000; coax_rad_i = 100; coax_rad_ai = 230; coax_rad_aa = 240; mesh_res = [5 5 5]; EPS0 = 8.85418781762e-12; MUE0 = 1.256637062e-6; C0 = 1/sqrt(EPS0*MUE0); Z0 = sqrt(MUE0/EPS0); f0 = 0.5e9; epsR = 1; %% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% openEMS_opts = ''; % openEMS_opts = [openEMS_opts ' --debug-material']; % openEMS_opts = [openEMS_opts ' --debug-operator']; % openEMS_opts = [openEMS_opts ' --disable-dumps --engine=fastest']; openEMS_opts = [openEMS_opts ' --engine=sse-compressed']; Sim_Path = 'tmp'; Sim_CSX = 'coax.xml'; if (exist(Sim_Path,'dir')) rmdir(Sim_Path,'s'); end mkdir(Sim_Path); %% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%% FDTD = InitFDTD(5e5,1e-5); FDTD = SetGaussExcite(FDTD,f0,f0); BC = [0 0 0 0 0 0]; %electric walls only FDTD = SetBoundaryCond(FDTD,BC); %% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = InitCSX(); mesh.x = -2.5*mesh_res(1)-coax_rad_aa : mesh_res(1) : coax_rad_aa+2.5*mesh_res(1); mesh.y = mesh.x; mesh.z = 0 : mesh_res(3) : length; CSX = DefineRectGrid(CSX, 1e-3,mesh); %% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% finalKappa = 0.3/abs_length^4; finalSigma = finalKappa*MUE0/EPS0; CSX = AddMaterial(CSX,'pml'); CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa); CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma); CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']); CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']); %%% coax CSX = AddMaterial(CSX,'copper'); CSX = SetMaterialProperty(CSX,'copper','Kappa',56e6); start = [0, 0 , 0];stop = [0, 0 , length]; CSX = AddCylinder(CSX,'copper',0 ,start,stop,coax_rad_i); CSX = AddCylindricalShell(CSX,'copper',0 ,start,stop,0.5*(coax_rad_aa+coax_rad_ai),(coax_rad_aa-coax_rad_ai)); start(3) = length-abs_length; CSX = AddCylindricalShell(CSX,'pml',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i)); %% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% start(3) = 0; stop(3)=mesh_res(1)/2; CSX = AddExcitation(CSX,'excite',0,[1 1 0]); weight{1} = '(x)/(x*x+y*y)'; weight{2} = 'y/pow(rho,2)'; weight{3} = 0; CSX = SetExcitationWeight(CSX, 'excite', weight ); CSX = AddCylindricalShell(CSX,'excite',0 ,start,stop,0.5*(coax_rad_i+coax_rad_ai),(coax_rad_ai-coax_rad_i)); %% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CSX = AddDump(CSX,'Et_','DumpMode',2); start = [mesh.x(1) , 0 , mesh.z(1)]; stop = [mesh.x(end) , 0 , mesh.z(end)]; CSX = AddBox(CSX,'Et_',0 , start,stop); CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',2); CSX = AddBox(CSX,'Ht_',0,start,stop); %voltage calc CSX = AddProbe(CSX,'ut1_1',0); start = [ coax_rad_i 0 length/2 ];stop = [ coax_rad_ai 0 length/2 ]; CSX = AddBox(CSX,'ut1_1', 0 ,start,stop); CSX = AddProbe(CSX,'ut1_2',0); start = [ coax_rad_i 0 length/2+mesh_res(3) ];stop = [ coax_rad_ai 0 length/2+mesh_res(3) ]; CSX = AddBox(CSX,'ut1_2', 0 ,start,stop); %current calc CSX = AddProbe(CSX,'it1',1); mid = 0.5*(coax_rad_i+coax_rad_ai); start = [ -mid -mid length/2 ];stop = [ mid mid length/2 ]; CSX = AddBox(CSX,'it1', 0 ,start,stop); %Write openEMS compatoble xml-file WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX); %% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% savePath = pwd(); cd(Sim_Path); %cd to working dir args = [Sim_CSX ' ' openEMS_opts]; invoke_openEMS(args) cd(savePath); %% postproc & do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/'); u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current i_f = UI.FD{3}.val; delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s) i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field ZL = Z0/2/pi/sqrt(epsR)*log(coax_rad_ai/coax_rad_i); %analytic line-impedance of a coax plot(UI.FD{1}.f,ZL*ones(size(u_f)),'g'); hold on; grid on; Z = u_f./i_f2; plot(UI.FD{1}.f,real(Z),'Linewidth',2); plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2); xlim([0 2*f0]); legend('Z_L','\Re\{Z\}','\Im\{Z\}','Location','Best');