/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "openems.h"
#include
#include "tools/array_ops.h"
#include "FDTD/operator.h"
#include "FDTD/engine.h"
#include "FDTD/engine_multithread.h"
#include "FDTD/processvoltage.h"
#include "FDTD/processcurrent.h"
#include "FDTD/processfields_td.h"
#include
#include
//external libs
#include "tinyxml.h"
#include "ContinuousStructure.h"
double CalcDiffTime(timeval t1, timeval t2)
{
double s_diff = t1.tv_sec - t2.tv_sec;
s_diff += (t1.tv_usec-t2.tv_usec)*1e-6;
return s_diff;
}
openEMS::openEMS()
{
FDTD_Op=NULL;
FDTD_Eng=NULL;
PA=NULL;
Enable_Dumps = true;
DebugMat = false;
DebugOp = false;
endCrit = 1e-6;
m_OverSampling = 4;
m_engine = EngineType_Standard;
m_engine_numThreads = 0;
}
openEMS::~openEMS()
{
Reset();
}
void openEMS::Reset()
{
if (PA) PA->DeleteAll();
delete PA; PA=0;
delete FDTD_Eng; FDTD_Eng=0;
delete FDTD_Op; FDTD_Op=0;
}
//! \brief processes a command line argument
//! returns true if argument is known
//! returns false if argument is unknown
bool openEMS::parseCommandLineArgument( const char *argv )
{
if (!argv)
return false;
if (strcmp(argv,"--disable-dumps")==0)
{
cout << "openEMS - disabling all field dumps" << endl;
SetEnableDumps(false);
return true;
}
else if (strcmp(argv,"--debug-material")==0)
{
cout << "openEMS - dumping material to 'material_dump.vtk'" << endl;
DebugMaterial();
return true;
}
else if (strcmp(argv,"--debug-operator")==0)
{
cout << "openEMS - dumping operator to 'operator_dump.vtk'" << endl;
DebugOperator();
return true;
}
else if (strcmp(argv,"--engine=multithreaded")==0)
{
cout << "openEMS - enabled multithreading" << endl;
m_engine = EngineType_Multithreaded;
return true;
}
else if (strncmp(argv,"--numThreads=",13)==0)
{
m_engine_numThreads = atoi(argv+13);
cout << "openEMS - fixed number of threads: " << m_engine_numThreads << endl;
return true;
}
return false;
}
int openEMS::SetupFDTD(const char* file)
{
if (file==NULL) return -1;
Reset();
double f0=0;
double fc=0;
int Excit_Type=0;
int bounds[6];
time_t startTime=time(NULL);
TiXmlDocument doc(file);
if (!doc.LoadFile())
{
cerr << "openEMS: Error File-Loading failed!!! File: " << file << endl;
exit(-1);
}
cout << "Read openEMS Settings..." << endl;
TiXmlElement* openEMSxml = doc.FirstChildElement("openEMS");
if (openEMSxml==NULL)
{
cerr << "Can't read openEMS ... " << endl;
exit(-1);
}
TiXmlElement* FDTD_Opts = openEMSxml->FirstChildElement("FDTD");
if (FDTD_Opts==NULL)
{
cerr << "Can't read openEMS FDTD Settings... " << endl;
exit(-1);
}
int help=0;
FDTD_Opts->QueryIntAttribute("NumberOfTimesteps",&help);
if (help<0)
NrTS=0;
else
NrTS = help;
FDTD_Opts->QueryDoubleAttribute("endCriteria",&endCrit);
if (endCrit==0)
endCrit=1e-6;
FDTD_Opts->QueryIntAttribute("OverSampling",&m_OverSampling);
if (m_OverSampling<2)
m_OverSampling=2;
TiXmlElement* Excite = FDTD_Opts->FirstChildElement("Excitation");
if (Excite==NULL)
{
cerr << "Can't read openEMS Excitation Settings... " << endl;
exit(-2);
}
Excite->QueryIntAttribute("Type",&Excit_Type);
if (Excit_Type==0)
{
Excite->QueryDoubleAttribute("f0",&f0);
Excite->QueryDoubleAttribute("fc",&fc);
}
else if (Excit_Type==1)
{
Excite->QueryDoubleAttribute("f0",&f0);
fc = 0;
}
else if (Excit_Type==2)
{
Excite->QueryDoubleAttribute("f0",&f0);
fc = 0;
}
TiXmlElement* BC = FDTD_Opts->FirstChildElement("BoundaryCond");
if (BC==NULL)
{
cerr << "Can't read openEMS boundary cond Settings... " << endl;
exit(-3);
}
BC->QueryIntAttribute("xmin",&bounds[0]);
BC->QueryIntAttribute("xmax",&bounds[1]);
BC->QueryIntAttribute("ymin",&bounds[2]);
BC->QueryIntAttribute("ymax",&bounds[3]);
BC->QueryIntAttribute("zmin",&bounds[4]);
BC->QueryIntAttribute("zmax",&bounds[5]);
cout << "Read Geometry..." << endl;
ContinuousStructure CSX;
string EC(CSX.ReadFromXML(openEMSxml));
if (EC.empty()==false)
{
cerr << EC << endl;
return(-2);
}
bool PMC[6];
for (int n=0;n<6;++n)
PMC[n]=(bounds[n]==1);
//*************** setup operator ************//
cout << "Create Operator..." << endl;
FDTD_Op = new Operator();
if (FDTD_Op->SetGeometryCSX(&CSX)==false) return(-1);
FDTD_Op->CalcECOperator();
unsigned int Nyquist = 0;
if (Excit_Type==0)
{
Nyquist = FDTD_Op->CalcGaussianPulsExcitation(f0,fc);
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else if (Excit_Type==1)
{
Nyquist = FDTD_Op->CalcSinusExcitation(f0,NrTS);
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else if (Excit_Type==2)
{
Nyquist = FDTD_Op->CalcDiracPulsExcitation();
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else if (Excit_Type==3)
{
Nyquist = FDTD_Op->CalcStepExcitation();
if (!Nyquist)
{
cerr << "openEMS: excitation setup failed!!" << endl;
exit(2);
}
}
else
{
cerr << "openEMS: Excitation type is unknown" << endl;
exit(-1);
}
FDTD_Op->SetNyquistNum(Nyquist);
if (DebugMat)
{
FDTD_Op->DumpMaterial2File("material_dump.vtk");
}
if (DebugOp)
{
FDTD_Op->DumpOperator2File("operator_dump.vtk");
}
time_t OpDoneTime=time(NULL);
FDTD_Op->ShowStat();
FDTD_Op->ApplyMagneticBC(PMC);
cout << "Creation time for operator: " << difftime(OpDoneTime,startTime) << " s" << endl;
//create FDTD engine
switch (m_engine) {
case EngineType_Multithreaded:
FDTD_Eng = Engine_Multithread::createEngine(FDTD_Op,m_engine_numThreads);
break;
default:
FDTD_Eng = Engine::createEngine(FDTD_Op);
break;
}
time_t currTime = time(NULL);
//*************** setup processing ************//
cout << "Setting up processing..." << endl;
PA = new ProcessingArray(Nyquist);
double start[3];
double stop[3];
vector Probes = CSX.GetPropertyByType(CSProperties::PROBEBOX);
for (size_t i=0;iGetPrimitive(0);
if (prim!=NULL)
{
bool acc;
double* bnd = prim->GetBoundBox(acc,true);
start[0]= bnd[0];start[1]=bnd[2];start[2]=bnd[4];
stop[0] = bnd[1];stop[1] =bnd[3];stop[2] =bnd[5];
CSPropProbeBox* pb = Probes.at(i)->ToProbeBox();
Processing* proc = NULL;
if (pb)
{
if (pb->GetProbeType()==0)
{
ProcessVoltage* procVolt = new ProcessVoltage(FDTD_Op,FDTD_Eng);
procVolt->OpenFile(pb->GetName());
proc=procVolt;
}
if (pb->GetProbeType()==1)
{
ProcessCurrent* procCurr = new ProcessCurrent(FDTD_Op,FDTD_Eng);
procCurr->OpenFile(pb->GetName());
proc=procCurr;
}
proc->SetProcessInterval(Nyquist/m_OverSampling);
proc->DefineStartStopCoord(start,stop);
PA->AddProcessing(proc);
}
else
delete proc;
}
}
vector DumpProps = CSX.GetPropertyByType(CSProperties::DUMPBOX);
for (size_t i=0;iSetEnable(Enable_Dumps);
ProcTD->SetProcessInterval(Nyquist/m_OverSampling);
//only looking for one prim atm
CSPrimitives* prim = DumpProps.at(i)->GetPrimitive(0);
if (prim==NULL)
delete ProcTD;
else
{
bool acc;
double* bnd = prim->GetBoundBox(acc);
start[0]= bnd[0];start[1]=bnd[2];start[2]=bnd[4];
stop[0] = bnd[1];stop[1] =bnd[3];stop[2] =bnd[5];
CSPropDumpBox* db = DumpProps.at(i)->ToDumpBox();
if (db)
{
ProcTD->SetDumpType((ProcessFields::DumpType)db->GetDumpType());
ProcTD->SetDumpMode((ProcessFields::DumpMode)db->GetDumpMode());
ProcTD->SetFileType((ProcessFields::FileType)db->GetFileType());
for (int n=0;n<3;++n)
ProcTD->SetSubSampling(db->GetSubSampling(n),n);
ProcTD->SetFilePattern(db->GetName());
ProcTD->SetFileName(db->GetName());
ProcTD->DefineStartStopCoord(start,stop);
ProcTD->InitProcess();
PA->AddProcessing(ProcTD);
}
else
delete ProcTD;
}
}
return 0;
}
void openEMS::RunFDTD()
{
cout << "Running FDTD engine... this may take a while... grab a cup of coffee?!?" << endl;
//special handling of a field processing, needed to realize the end criteria...
ProcessFields* ProcField = new ProcessFields(FDTD_Op,FDTD_Eng);
PA->AddProcessing(ProcField);
double maxE=0,currE=0;
//add all timesteps to end-crit field processing with max excite amplitude
unsigned int maxExcite = FDTD_Op->GetMaxExcitationTimestep();
for (unsigned int n=0;nE_Exc_Count;++n)
ProcField->AddStep(FDTD_Op->E_Exc_delay[n]+maxExcite);
double change=1;
int prevTS=0,currTS=0;
double speed = FDTD_Op->GetNumberCells()/1e6;
double t_diff;
timeval currTime;
gettimeofday(&currTime,NULL);
timeval startTime = currTime;
timeval prevTime= currTime;
//*************** simulate ************//
int step=PA->Process();
if ((step<0) || (step>(int)NrTS)) step=NrTS;
while ((FDTD_Eng->GetNumberOfTimesteps()endCrit))
{
FDTD_Eng->IterateTS(step);
step=PA->Process();
if (ProcField->CheckTimestep())
{
currE = ProcField->CalcTotalEnergy();
if (currE>maxE)
maxE=currE;
}
// cout << " do " << step << " steps; current: " << eng.GetNumberOfTimesteps() << endl;
currTS = FDTD_Eng->GetNumberOfTimesteps();
if ((step<0) || (step>(int)(NrTS - currTS))) step=NrTS - currTS;
gettimeofday(&currTime,NULL);
t_diff = CalcDiffTime(currTime,prevTime);
if (t_diff>4)
{
currE = ProcField->CalcTotalEnergy();
if (currE>maxE)
maxE=currE;
cout << "[@" << setw(8) << (int)CalcDiffTime(currTime,startTime) << "s] Timestep: " << setw(12) << currTS << " (" << setw(6) << setprecision(2) << std::fixed << (double)currTS/(double)NrTS*100.0 << "%)" ;
cout << " with currently " << setw(6) << setprecision(1) << std::fixed << speed*(currTS-prevTS)/t_diff << " MCells/s" ;
if (maxE)
change = currE/maxE;
cout << " --- Energy: ~" << setw(6) << setprecision(2) << std::scientific << currE << " (decrement: " << setw(6) << setprecision(2) << std::fixed << fabs(10.0*log10(change)) << "dB)" << endl;
prevTime=currTime;
prevTS=currTS;
}
}
//*************** postproc ************//
prevTime = currTime;
gettimeofday(&currTime,NULL);
t_diff = CalcDiffTime(currTime,startTime);
cout << "Time for " << FDTD_Eng->GetNumberOfTimesteps() << " iterations with " << FDTD_Op->GetNumberCells() << " cells : " << t_diff << " sec" << endl;
cout << "Speed: " << speed*(double)FDTD_Eng->GetNumberOfTimesteps()/t_diff << " MCells/s " << endl;
}