openEMS/matlab/Tutorials/Simple_Patch_Antenna.m

188 lines
5.9 KiB
Matlab

%% Simple Patch Antenna Tutorial
%
% Description at:
% <http://openems.de/index.php/Tutorial:_Simple_Patch_Antenna>
%
% Tested with
% - Matlab 2013a / Octave 4.0
% - openEMS v0.0.35
%
% (C) 2010-2017 Thorsten Liebig <thorsten.liebig@uni-due.de>
%%
close all
clear
clc
%% Setup the Simulation
physical_constants;
unit = 1e-3; % all length in mm
% patch width in x-direction
patch.width = 32; % resonant length
% patch length in y-direction
patch.length = 40;
%substrate setup
substrate.epsR = 3.38;
substrate.kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR;
substrate.width = 60;
substrate.length = 60;
substrate.thickness = 1.524;
substrate.cells = 4;
%setup feeding
feed.pos = -6; %feeding position in x-direction
feed.R = 50; %feed resistance
% size of the simulation box
SimBox = [200 200 150];
%% Setup FDTD Parameter & Excitation Function
f0 = 2e9; % center frequency
fc = 1e9; % 20 dB corner frequency
FDTD = InitFDTD( 'NrTs', 30000 );
FDTD = SetGaussExcite( FDTD, f0, fc );
BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions
FDTD = SetBoundaryCond( FDTD, BC );
%% Setup CSXCAD Geometry & Mesh
CSX = InitCSX();
%initialize the mesh with the "air-box" dimensions
mesh.x = [-SimBox(1)/2 SimBox(1)/2];
mesh.y = [-SimBox(2)/2 SimBox(2)/2];
mesh.z = [-SimBox(3)/3 SimBox(3)*2/3];
% Create Patch
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
start = [-patch.width/2 -patch.length/2 substrate.thickness];
stop = [ patch.width/2 patch.length/2 substrate.thickness];
CSX = AddBox(CSX,'patch',10,start,stop); % add a box-primitive to the metal property 'patch'
% Create Substrate
CSX = AddMaterial( CSX, 'substrate' );
CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa );
start = [-substrate.width/2 -substrate.length/2 0];
stop = [ substrate.width/2 substrate.length/2 substrate.thickness];
CSX = AddBox( CSX, 'substrate', 0, start, stop );
% add extra cells to discretize the substrate thickness
mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z];
% Create Ground same size as substrate
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
start(3)=0;
stop(3) =0;
CSX = AddBox(CSX,'gnd',10,start,stop);
% Apply the Excitation & Resist as a Current Source
start = [feed.pos 0 0];
stop = [feed.pos 0 substrate.thickness];
[CSX port] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], true);
% Finalize the Mesh
% detect all edges except of the patch
mesh = DetectEdges(CSX, mesh,'ExcludeProperty','patch');
% detect and set a special 2D metal edge mesh for the patch
mesh = DetectEdges(CSX, mesh,'SetProperty','patch','2D_Metal_Edge_Res', c0/(f0+fc)/unit/50);
% generate a smooth mesh with max. cell size: lambda_min / 20
mesh = SmoothMesh(mesh, c0/(f0+fc)/unit/20);
CSX = DefineRectGrid(CSX, unit, mesh);
CSX = AddDump(CSX,'Hf', 'DumpType', 11, 'Frequency',[2.4e9]);
CSX = AddBox(CSX,'Hf',10,[-substrate.width -substrate.length -10*substrate.thickness],[substrate.width +substrate.length 10*substrate.thickness]); %assign box
% add a nf2ff calc box; size is 3 cells away from MUR boundary condition
start = [mesh.x(4) mesh.y(4) mesh.z(4)];
stop = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
%% Prepare and Run Simulation
Sim_Path = 'tmp_Patch_Ant';
Sim_CSX = 'patch_ant.xml';
% create an empty working directory
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
% write openEMS compatible xml-file
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
% show the structure
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
% run openEMS
RunOpenEMS( Sim_Path, Sim_CSX);
%% Postprocessing & Plots
freq = linspace( max([1e9,f0-fc]), f0+fc, 501 );
port = calcPort(port, Sim_Path, freq);
%% Smith chart port reflection
plotRefl(port, 'threshold', -10)
title( 'reflection coefficient' );
% plot feed point impedance
Zin = port.uf.tot ./ port.if.tot;
figure
plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 );
hold on
grid on
plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 );
title( 'feed point impedance' );
xlabel( 'frequency f / MHz' );
ylabel( 'impedance Z_{in} / Ohm' );
legend( 'real', 'imag' );
% plot reflection coefficient S11
s11 = port.uf.ref ./ port.uf.inc;
figure
plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 );
grid on
title( 'reflection coefficient S_{11}' );
xlabel( 'frequency f / MHz' );
ylabel( 'reflection coefficient |S_{11}|' );
drawnow
%% NFFF Plots
%find resonance frequency from s11
f_res_ind = find(s11==min(s11));
f_res = freq(f_res_ind);
% calculate the far field at phi=0 degrees and at phi=90 degrees
disp( 'calculating far field at phi=[0 90] deg...' );
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, [-180:2:180]*pi/180, [0 90]*pi/180);
% display power and directivity
disp( ['radiated power: Prad = ' num2str(nf2ff.Prad) ' Watt']);
disp( ['directivity: Dmax = ' num2str(nf2ff.Dmax) ' (' num2str(10*log10(nf2ff.Dmax)) ' dBi)'] );
disp( ['efficiency: nu_rad = ' num2str(100*nf2ff.Prad./port.P_inc(f_res_ind)) ' %']);
% normalized directivity as polar plot
figure
polarFF(nf2ff,'xaxis','theta','param',[1 2],'normalize',1)
% log-scale directivity plot
figure
plotFFdB(nf2ff,'xaxis','theta','param',[1 2])
% conventional plot approach
% plot( nf2ff.theta*180/pi, 20*log10(nf2ff.E_norm{1}/max(nf2ff.E_norm{1}(:)))+10*log10(nf2ff.Dmax));
drawnow
% Show 3D pattern
disp( 'calculating 3D far field pattern and dumping to vtk (use Paraview to visualize)...' );
thetaRange = (0:2:180);
phiRange = (0:2:360) - 180;
nf2ff = CalcNF2FF(nf2ff, Sim_Path, f_res, thetaRange*pi/180, phiRange*pi/180,'Verbose',1,'Outfile','3D_Pattern.h5');
figure
plotFF3D(nf2ff,'logscale',-20);
E_far_normalized = nf2ff.E_norm{1} / max(nf2ff.E_norm{1}(:)) * nf2ff.Dmax;
DumpFF2VTK([Sim_Path '/3D_Pattern.vtk'],E_far_normalized,thetaRange,phiRange,'scale',1e-3);