openEMS/python/Tutorials/Rect_Waveguide.py

127 lines
3.1 KiB
Python

# -*- coding: utf-8 -*-
"""
Rectangular Waveguide Tutorial
Description at:
http://openems.de/doc/openEMS/Tutorials.html#rectangular-waveguide
Tested with
- python 3.4
- openEMS v0.0.34+
(C) 2015-2016 Thorsten Liebig <thorsten.liebig@gmx.de>
"""
### Import Libraries
import os, tempfile
from pylab import *
from CSXCAD import ContinuousStructure
from openEMS import openEMS
from openEMS.physical_constants import *
### Setup the simulation
Sim_Path = os.path.join(tempfile.gettempdir(), 'Rect_WG')
post_proc_only = False
unit = 1e-6; #drawing unit in um
# waveguide dimensions
# WR42
a = 10700; #waveguide width
b = 4300; #waveguide height
length = 50000;
# frequency range of interest
f_start = 20e9;
f_0 = 24e9;
f_stop = 26e9;
lambda0 = C0/f_0/unit;
#waveguide TE-mode definition
TE_mode = 'TE10';
#targeted mesh resolution
mesh_res = lambda0/30
### Setup FDTD parameter & excitation function
FDTD = openEMS(NrTS=1e4);
FDTD.SetGaussExcite(0.5*(f_start+f_stop),0.5*(f_stop-f_start));
# boundary conditions
FDTD.SetBoundaryCond([0, 0, 0, 0, 3, 3]);
### Setup geometry & mesh
CSX = ContinuousStructure()
FDTD.SetCSX(CSX)
mesh = CSX.GetGrid()
mesh.SetDeltaUnit(unit)
mesh.AddLine('x', [0, a])
mesh.AddLine('y', [0, b])
mesh.AddLine('z', [0, length])
## Apply the waveguide port
ports = []
start=[0, 0, 10*mesh_res];
stop =[a, b, 15*mesh_res];
mesh.AddLine('z', [start[2], stop[2]])
ports.append(FDTD.AddRectWaveGuidePort( 0, start, stop, 'z', a*unit, b*unit, TE_mode, 1))
start=[0, 0, length-10*mesh_res];
stop =[a, b, length-15*mesh_res];
mesh.AddLine('z', [start[2], stop[2]])
ports.append(FDTD.AddRectWaveGuidePort( 1, start, stop, 'z', a*unit, b*unit, TE_mode))
mesh.SmoothMeshLines('all', mesh_res, ratio=1.4)
### Define dump box...
Et = CSX.AddDump('Et', file_type=0, sub_sampling=[2,2,2])
start = [0, 0, 0];
stop = [a, b, length];
Et.AddBox(start, stop);
### Run the simulation
if 0: # debugging only
CSX_file = os.path.join(Sim_Path, 'rect_wg.xml')
if not os.path.exists(Sim_Path):
os.mkdir(Sim_Path)
CSX.Write2XML(CSX_file)
from CSXCAD import AppCSXCAD_BIN
os.system(AppCSXCAD_BIN + ' "{}"'.format(CSX_file))
if not post_proc_only:
FDTD.Run(Sim_Path, verbose=3, cleanup=True)
### Postprocessing & plotting
freq = linspace(f_start,f_stop,201)
for port in ports:
port.CalcPort(Sim_Path, freq)
s11 = ports[0].uf_ref / ports[0].uf_inc
s21 = ports[1].uf_ref / ports[0].uf_inc
ZL = ports[0].uf_tot / ports[0].if_tot
ZL_a = ports[0].ZL # analytic waveguide impedance
## Plot s-parameter
figure()
plot(freq*1e-6,20*log10(abs(s11)),'k-',linewidth=2, label='$S_{11}$')
grid()
plot(freq*1e-6,20*log10(abs(s21)),'r--',linewidth=2, label='$S_{21}$')
legend();
ylabel('S-Parameter (dB)')
xlabel(r'frequency (MHz) $\rightarrow$')
## Compare analytic and numerical wave-impedance
figure()
plot(freq*1e-6,real(ZL), linewidth=2, label='$\Re\{Z_L\}$')
grid()
plot(freq*1e-6,imag(ZL),'r--', linewidth=2, label='$\Im\{Z_L\}$')
plot(freq*1e-6,ZL_a,'g-.',linewidth=2, label='$Z_{L, analytic}$')
ylabel('ZL $(\Omega)$')
xlabel(r'frequency (MHz) $\rightarrow$')
legend()
show()