117 lines
3.2 KiB
Matlab
117 lines
3.2 KiB
Matlab
close all;
|
|
clear all;
|
|
clc
|
|
|
|
EPS0 = 8.85418781762e-12;
|
|
MUE0 = 1.256637062e-6;
|
|
C0 = 1/sqrt(EPS0*MUE0);
|
|
|
|
f0 = 0.5e9;
|
|
|
|
abs_length = 250;
|
|
length = 6000;
|
|
port_dist = 1500;
|
|
rad_i = 100;
|
|
rad_a = 230;
|
|
partial = 0.25;
|
|
max_mesh = 15;
|
|
max_alpha = max_mesh;
|
|
N_alpha = ceil(rad_a * 2*pi * partial / max_alpha);
|
|
mesh_res = [max_mesh 2*pi*partial/N_alpha max_mesh];
|
|
|
|
openEMS_Path = [pwd() '/../../']
|
|
openEMS_opts = '';
|
|
openEMS_opts = [openEMS_opts ' --disable-dumps'];
|
|
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
|
|
|
Sim_Path = 'tmp';
|
|
Sim_CSX = 'coax.xml';
|
|
|
|
mkdir(Sim_Path);
|
|
|
|
%setup FDTD parameter
|
|
FDTD = InitCylindricalFDTD(1e5,1e-4);
|
|
FDTD = SetGaussExcite(FDTD,f0,f0);
|
|
BC = [0 0 1 1 0 0];
|
|
FDTD = SetBoundaryCond(FDTD,BC);
|
|
|
|
%setup CSXCAD geometry
|
|
CSX = InitCSX();
|
|
mesh.x = rad_i : mesh_res(1) : rad_a;
|
|
mesh.y = -pi*partial-mesh_res(2)/2 : mesh_res(2) : pi*partial+mesh_res(2)/2;
|
|
mesh.z = 0 : mesh_res(3) : length;
|
|
CSX = DefineRectGrid(CSX, 1e-3,mesh);
|
|
|
|
%%%fake pml
|
|
finalKappa = 0.3/abs_length^4;
|
|
finalSigma = finalKappa*MUE0/EPS0;
|
|
CSX = AddMaterial(CSX,'pml');
|
|
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa);
|
|
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
|
|
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
|
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
|
|
|
start = [rad_i mesh.y(1) length-abs_length];
|
|
stop = [rad_a mesh.y(end) length];
|
|
CSX = AddBox(CSX,'pml',0 ,start,stop);
|
|
|
|
start = [rad_i mesh.y(1) 0];
|
|
stop = [rad_a mesh.y(end) 0];
|
|
|
|
CSX = AddExcitation(CSX,'excite',0,[1 0 0]);
|
|
weight{1} = '1/rho';
|
|
weight{2} = 0;
|
|
weight{3} = 0;
|
|
CSX = SetExcitationWeight(CSX, 'excite', weight );
|
|
CSX = AddBox(CSX,'excite',0 ,start,stop);
|
|
|
|
%dump
|
|
CSX = AddDump(CSX,'Et_','DumpMode',2);
|
|
start = [mesh.x(1) , 0 , mesh.z(1)];
|
|
stop = [mesh.x(end) , 0 , mesh.z(end)];
|
|
CSX = AddBox(CSX,'Et_',0 , start,stop);
|
|
|
|
CSX = AddDump(CSX,'Ht_','DumpType',1,'DumpMode',2);
|
|
CSX = AddBox(CSX,'Ht_',0,start,stop);
|
|
|
|
% voltage calc (take a voltage average to be at the same spot as the
|
|
% current calculation)
|
|
CSX = AddProbe(CSX,'ut1_1',0);
|
|
start = [ rad_i 0 port_dist ];stop = [ rad_a 0 port_dist ];
|
|
CSX = AddBox(CSX,'ut1_1', 0 ,start,stop);
|
|
CSX = AddProbe(CSX,'ut1_2',0);
|
|
start = [ rad_i 0 port_dist+mesh_res(3) ];stop = [ rad_a 0 port_dist+mesh_res(3) ];
|
|
CSX = AddBox(CSX,'ut1_2', 0 ,start,stop);
|
|
|
|
% current calc
|
|
CSX = AddProbe(CSX,'it1',1);
|
|
mid = 0.5*(rad_i+rad_a);
|
|
start = [ 0 mesh.y(1) port_dist ];stop = [ mid mesh.y(end) port_dist ];
|
|
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
|
|
|
%Write openEMS compatoble xml-file
|
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
|
|
|
%cd to working dir and run openEMS
|
|
savePath = pwd();
|
|
cd(Sim_Path); %cd to working dir
|
|
command = [openEMS_Path 'openEMS.sh ' Sim_CSX ' ' openEMS_opts];
|
|
disp(command);
|
|
system(command)
|
|
cd(savePath);
|
|
|
|
UI = ReadUI({'ut1_1','ut1_2','it1'},'tmp/');
|
|
u_f = (UI.FD{1}.val + UI.FD{2}.val)/2; %averaging voltages to fit current
|
|
i_f = UI.FD{3}.val / partial;
|
|
|
|
delta_t = UI.TD{3}.t(1) - UI.TD{1}.t(1); % half time-step (s)
|
|
i_f2 = i_f .* exp(-1i*2*pi*UI.FD{1}.f*delta_t); % compensate half time-step advance of H-field
|
|
|
|
Z = u_f./i_f2;
|
|
plot(UI.FD{1}.f,real(Z),'Linewidth',2);
|
|
hold on;
|
|
grid on;
|
|
plot(UI.FD{1}.f,imag(Z),'r','Linewidth',2);
|
|
xlim([0 2*f0]);
|
|
|