openEMS/FDTD/processfields.cpp

462 lines
16 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iomanip>
#include <H5Cpp.h>
#include "tools/global.h"
#include "processfields.h"
#include "engine_interface_fdtd.h"
ProcessFields::ProcessFields(Operator_Base* op) : Processing(op)
{
m_DumpType = E_FIELD_DUMP;
// vtk-file is default
m_fileType = VTK_FILETYPE;
SetSubSampling(1);
SetPrecision(6);
for (int n=0;n<3;++n)
{
numLines[n]=0;
discLines[n]=NULL;
}
}
ProcessFields::~ProcessFields()
{
for (int n=0;n<3;++n)
{
delete[] discLines[n];
discLines[n]=NULL;
}
}
void ProcessFields::InitProcess()
{
if (Enabled==false) return;
//get the correct direction names for all coordinate systems
string names[] = {Op->GetDirName(0),Op->GetDirName(1),Op->GetDirName(2)};
if (m_fileType==HDF5_FILETYPE)
{
m_filename+= ".h5";
H5::H5File* file = new H5::H5File( m_filename , H5F_ACC_TRUNC );
H5::Group* group = new H5::Group( file->createGroup( "/Mesh" ));
for (int n=0;n<3;++n)
{
hsize_t dimsf[1]; // dataset dimensions
dimsf[0] = numLines[n];
H5::DataSpace dataspace( 1, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
H5::DataSet dataset = group->createDataSet( names[n].c_str(), datatype, dataspace );
//convert to float...
float* array = new float[numLines[n]];
for (unsigned int i=0;i<numLines[n];++i)
{
#ifdef OUTPUT_IN_DRAWINGUNITS
array[i] = Lines[n][i];
#else
if ((m_Mesh_Type==CYLINDRICAL_MESH) && (n==1)) //check for alpha-direction
array[i] = discLines[n][i];
else
array[i] = discLines[n][i] * Op->GetGridDelta();
#endif
}
//write to dataset
dataset.write( array, H5::PredType::NATIVE_FLOAT );
}
delete group;
group = new H5::Group( file->createGroup( "/FieldData" ));
delete group;
delete file;
}
}
string ProcessFields::GetFieldNameByType(DumpType type)
{
switch (type)
{
case E_FIELD_DUMP:
return "E-Field";
case H_FIELD_DUMP:
return "H-Field";
}
return "unknown field";
}
void ProcessFields::DefineStartStopCoord(double* dstart, double* dstop)
{
vector<double> lines;
// determine mesh type
bool dualMesh = false;
if (m_DumpType == H_FIELD_DUMP)
dualMesh = true;
Engine_Interface_Base::InterpolationType m_DumpMode = m_Eng_Interface->GetInterpolationType();
if (m_DumpMode==Engine_Interface_Base::NO_INTERPOLATION)
{
if (!Op->SnapToMesh(dstart,start,dualMesh))
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (!Op->SnapToMesh(dstop,stop,dualMesh))
cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
for (int n=0;n<3;++n)
{
// normalize order of start and stop
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
// construct new discLines
lines.clear();
for (unsigned int i=start[n];i<=stop[n];i+=subSample[n])
{
lines.push_back(Op->GetDiscLine(n,i,dualMesh));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;i<numLines[n];++i)
discLines[n][i] = lines.at(i);
}
}
else if (m_DumpMode==Engine_Interface_Base::NODE_INTERPOLATE)
{
if (Op->SnapToMesh(dstart,start)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (Op->SnapToMesh(dstop,stop)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
//create mesh
for (int n=0;n<3;++n)
{
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
// if (stop[n]==Op->GetNumberOfLines(n)-1)
// --stop[n];
// cerr << "start " << start[n] << "stop " << stop[n];
lines.clear();
for (unsigned int i=start[n];i<=stop[n];i+=subSample[n])
{
lines.push_back(Op->GetDiscLine(n,i));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;i<numLines[n];++i)
discLines[n][i] = lines.at(i);
}
}
else if (m_DumpMode==Engine_Interface_Base::CELL_INTERPOLATE)
{
if (Op->SnapToMesh(dstart,start,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check start value!!" << endl;
if (Op->SnapToMesh(dstop,stop,true)==false) cerr << "ProcessFields::DefineStartStopCoord: Warning: Snapping problem, check stop value!!" << endl;
//create dual mesh
for (int n=0;n<3;++n)
{
// cerr << "start " << start[n] << "stop " << stop[n];
if (start[n]>stop[n])
{
unsigned int help = start[n];
start[n]=stop[n];
stop[n]=help;
}
++stop[n];
lines.clear();
for (unsigned int i=start[n];i<stop[n];i+=subSample[n])
{
lines.push_back(Op->GetDiscLine(n,i,true));//0.5*(Op->discLines[n][i+1] + Op->discLines[n][i]));
}
numLines[n] = lines.size();
delete[] discLines[n];
discLines[n] = new double[numLines[n]];
for (unsigned int i=0;i<numLines[n];++i)
discLines[n][i] = lines.at(i);
}
}
if (g_settings.showProbeDiscretization()) {
// FIXME the information E-Field / H-Field and therefore which mesh to use is missing
bool dualMesh = false;
cerr << m_filename << ": snapped coords: (" << Op->GetDiscLine( 0, start[0], dualMesh ) << ","
<< Op->GetDiscLine( 1, start[1], dualMesh ) << "," << Op->GetDiscLine( 2, start[2], dualMesh ) << ") -> ("
<< Op->GetDiscLine( 0, stop[0], dualMesh ) << ","<< Op->GetDiscLine( 1, stop[1], dualMesh ) << ","
<< Op->GetDiscLine( 2, stop[2], dualMesh ) << ")";
cerr << " [" << start[0] << "," << start[1] << "," << start[2] << "] -> ["
<< stop[0] << "," << stop[1] << "," << stop[2] << "]" << endl;
}
}
double ProcessFields::CalcTotalEnergy() const
{
double energy=0.0;
Engine_Interface_FDTD* EI_FDTD = dynamic_cast<Engine_Interface_FDTD*>(m_Eng_Interface);
if (EI_FDTD)
{
const Engine* Eng = EI_FDTD->GetFDTDEngine();
unsigned int pos[3];
for (pos[0]=0;pos[0]<Op->GetNumberOfLines(0);++pos[0])
{
for (pos[1]=0;pos[1]<Op->GetNumberOfLines(1);++pos[1])
{
for (pos[2]=0;pos[2]<Op->GetNumberOfLines(2);++pos[2])
{
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(0,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(1,pos[0],pos[1],pos[2]) * Eng->GetCurr(2,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(0,pos[0],pos[1],pos[2]));
energy+=fabs(Eng->GetVolt(2,pos[0],pos[1],pos[2]) * Eng->GetCurr(1,pos[0],pos[1],pos[2]));
}
}
}
}
return energy*0.5;
}
void ProcessFields::SetSubSampling(unsigned int subSampleRate, int dir)
{
if (dir>2) return;
if (dir<0)
{
subSample[0]=subSampleRate;
subSample[1]=subSampleRate;
subSample[2]=subSampleRate;
}
else subSample[dir]=subSampleRate;
}
void ProcessFields::WriteVTKHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
if (meshT==CARTESIAN_MESH)
WriteVTKCartesianGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
else if (meshT==CYLINDRICAL_MESH)
WriteVTKCylindricalGridHeader(file, discLines, numLines, precision, header_info, discLines_scaling);
else
cerr << "ProcessFields::WriteVTKHeader: Warning: unknown mesh type, skipping header -> file will be invalid..." << endl;
}
void ProcessFields::WriteVTKCartesianGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling)
{
file << "# vtk DataFile Version 2.0" << endl;
file << "Rectilinear Grid openEMS_ProcessFields";
if (!header_info.empty())
file << " " << header_info;
file << endl;
file << "ASCII" << endl;
file << "DATASET RECTILINEAR_GRID " << endl;
file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl;
file << "X_COORDINATES " << numLines[0] << " " << __VTK_DATA_TYPE__ << endl;
for (unsigned int i=0;i<numLines[0];++i)
file << setprecision(precision) << discLines[0][i] * discLines_scaling << " ";
file << endl;
file << "Y_COORDINATES " << numLines[1] << " " << __VTK_DATA_TYPE__ << endl;
for (unsigned int i=0;i<numLines[1];++i)
file << setprecision(precision) << discLines[1][i] * discLines_scaling << " ";
file << endl;
file << "Z_COORDINATES " << numLines[2] << " " << __VTK_DATA_TYPE__ << endl;
for (unsigned int i=0;i<numLines[2];++i)
file << setprecision(precision) << discLines[2][i] * discLines_scaling << " ";
file << endl << endl;
file << "POINT_DATA " << numLines[0]*numLines[1]*numLines[2] << endl;
}
void ProcessFields::WriteVTKCylindricalGridHeader(ofstream &file, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, double discLines_scaling)
{
file << "# vtk DataFile Version 3.0" << endl;
file << "Structured Grid from openEMS_ProcessFields";
if (!header_info.empty())
file << " " << header_info;
file << endl;
file << "ASCII" << endl;
file << "DATASET STRUCTURED_GRID " << endl;
file << "DIMENSIONS " << numLines[0] << " " << numLines[1] << " " << numLines[2] << endl;
file << "POINTS " << numLines[0]*numLines[1]*numLines[2] << " " << __VTK_DATA_TYPE__ << endl;
for (unsigned int k=0;k<numLines[2];++k)
for (unsigned int j=0;j<numLines[1];++j)
for (unsigned int i=0;i<numLines[0];++i)
{
file << setprecision(precision) << discLines[0][i] * cos(discLines[1][j]) * discLines_scaling << " "
<< discLines[0][i] * sin(discLines[1][j]) * discLines_scaling << " "
<< discLines[2][k] * discLines_scaling << endl;
}
file << endl;
file << endl << endl;
file << "POINT_DATA " << numLines[0]*numLines[1]*numLines[2] << endl;
}
void ProcessFields::WriteVTKVectorArray(ofstream &file, string name, FDTD_FLOAT const* const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, MeshType meshT)
{
file << "VECTORS " << name << " " << __VTK_DATA_TYPE__ << endl;
if (g_settings.NativeFieldDumps())
meshT = CARTESIAN_MESH; //dump field components as they are...
unsigned int pos[3];
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
double cos_a = cos(discLines[1][pos[1]]); //needed only for CYLINDRICAL_MESH
double sin_a = sin(discLines[1][pos[1]]); //needed only for CYLINDRICAL_MESH
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
switch (meshT)
{
case CARTESIAN_MESH:
UNUSED(discLines); //disclines not needed for the original cartesian mesh
//in x
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] << " ";
//in y
file << setprecision(precision) << array[1][pos[0]][pos[1]][pos[2]] << " ";
//in z
file << setprecision(precision) << array[2][pos[0]][pos[1]][pos[2]] << endl;
break;
case CYLINDRICAL_MESH:
//in x : F_x = F_r * cos(a) - F_a * sin(a);
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] * cos_a - array[1][pos[0]][pos[1]][pos[2]] * sin_a << " ";
//in y : F_y = F_r * sin(a) + F_a * cos(a);
file << setprecision(precision) << array[0][pos[0]][pos[1]][pos[2]] * sin_a + array[1][pos[0]][pos[1]][pos[2]] * cos_a << " ";
//in z
file << setprecision(precision) << array[2][pos[0]][pos[1]][pos[2]] << endl;
break;
}
}
}
}
}
bool ProcessFields::DumpVectorArray2VTK(ofstream &file, string name, FDTD_FLOAT const* const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
WriteVTKVectorArray(file, name, array, discLines, numLines, precision, meshT);
return true;
}
bool ProcessFields::DumpMultiVectorArray2VTK(ofstream &file, string names[], FDTD_FLOAT const* const* const* const* const* array, unsigned int numFields, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
for (unsigned int n=0;n<numFields;++n)
{
WriteVTKVectorArray(file, names[n], array[n], discLines, numLines, precision, meshT);
file << endl;
}
return true;
}
void ProcessFields::WriteVTKScalarArray(ofstream &file, string name, FDTD_FLOAT const* const* const* array, unsigned int const* numLines, unsigned int precision)
{
file << "SCALARS " << name << " " << __VTK_DATA_TYPE__ << 1 << endl;
file << "LOOKUP_TABLE default" << endl;
unsigned int pos[3];
int count=0;
for (pos[2]=0;pos[2]<numLines[2];++pos[2])
{
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
file << setprecision(precision) << array[pos[0]][pos[1]][pos[2]] << " ";
++count;
if (count%10==0)
file << endl;
}
}
}
}
bool ProcessFields::DumpScalarArray2VTK(ofstream &file, string name, FDTD_FLOAT const* const* const* array, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
WriteVTKScalarArray(file, name, array, numLines, precision);
return true;
}
bool ProcessFields::DumpMultiScalarArray2VTK(ofstream &file, string names[], FDTD_FLOAT const* const* const* const* array, unsigned int numFields, double const* const* discLines, unsigned int const* numLines, unsigned int precision, string header_info, MeshType meshT, double discLines_scaling)
{
WriteVTKHeader(file, discLines, numLines, precision, header_info, meshT, discLines_scaling);
for (unsigned int n=0;n<numFields;++n)
{
WriteVTKScalarArray(file, names[n], array[n], numLines, precision);
file << endl;
}
return true;
}
bool ProcessFields::DumpVectorArray2HDF5(string filename, string name, FDTD_FLOAT const* const* const* const* array, unsigned int const* numLines, float time)
{
const H5std_string FILE_NAME(filename);
const H5std_string DATASET_NAME( name );
H5::H5File file( FILE_NAME, H5F_ACC_RDWR );
H5::Group group( file.openGroup( "/FieldData" ));
hsize_t dimsf[4]; // dataset dimensions
dimsf[0] = 3;
dimsf[1] = numLines[2];
dimsf[2] = numLines[1];
dimsf[3] = numLines[0];
H5::DataSpace dataspace( 4, dimsf );
H5::FloatType datatype( H5::PredType::NATIVE_FLOAT );
// datatype.setOrder( H5T_ORDER_LE );
H5::DataSet dataset = group.createDataSet( DATASET_NAME, datatype, dataspace );
hsize_t t_dimsf[] = {1};
H5::DataSpace t_dataspace( 1, t_dimsf );
H5::Attribute attr = dataset.createAttribute("time",H5::PredType::NATIVE_FLOAT,t_dataspace);
attr.write( H5::PredType::NATIVE_FLOAT , &time);
// I have not the slightest idea why this array-copy action is necessary... but it's the only way hdf5 does what it is supposed to do anyway!!
// at least it is save in case FDTD_FLOAT was defined as double...
// why does hdf5 write the dimensions backwards??? or matlab???
float hdf5array[3][numLines[2]][numLines[1]][numLines[0]];
for (int n=0;n<3;++n)
{
for (unsigned int i=0;i<numLines[0];++i)
{
for (unsigned int j=0;j<numLines[1];++j)
{
for (unsigned int k=0;k<numLines[2];++k)
{
hdf5array[n][k][j][i] = array[n][i][j][k];
}
}
}
}
dataset.write( hdf5array, H5::PredType::NATIVE_FLOAT );
return true;
}