openEMS/TESTSUITE/combinedtests/cavity.m

230 lines
7.2 KiB
Matlab

function pass = cavity( openEMS_options, options )
physical_constants;
ENABLE_PLOTS = 1;
CLEANUP = 1; % if enabled and result is PASS, remove simulation folder
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
SILENT = 0; % 0=show openEMS output
if nargin < 1
openEMS_options = '';
end
if nargin < 2
options = '';
end
if any(strcmp( options, 'run_testsuite' ))
ENABLE_PLOTS = 0;
STOP_IF_FAILED = 0;
SILENT = 1;
end
% LIMITS - inside
lower_rel_limit = 1.3e-3; % -0.13%
upper_rel_limit = 1.3e-3; % +0.13%
lower_rel_limit_TM = 2.5e-3; % -0.25%
upper_rel_limit_TM = 0; % +0%
min_rel_amplitude = 0.6; % 60%
min_rel_amplitude_TM = 0.27; % 27%
% LIMITS - outside
outer_rel_limit = 0.02;
max_rel_amplitude = 0.17;
% structure
a = 5e-2;
b = 2e-2;
d = 6e-2;
if ~((b<a) && (a<d))
error 'correct the dimensions of the cavity'
end
f_start = 1e9;
f_stop = 10e9;
Sim_Path = 'tmp_cavity';
Sim_CSX = 'cavity.xml';
[status,message,messageid]=rmdir(Sim_Path,'s');
[status,message,messageid]=mkdir(Sim_Path);
%setup FDTD parameter
FDTD = InitFDTD( 20000,1e-6 );
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
BC = [0 0 0 0 0 0]; % PEC boundaries
FDTD = SetBoundaryCond(FDTD,BC);
%setup CSXCAD geometry
CSX = InitCSX();
% grid_res = 2e-3;
% mesh.x = 0:grid_res:a; %linspace(0,a,25);
% mesh.y = 0:grid_res:b; %linspace(0,b,25);
% mesh.z = 0:grid_res:d; %linspace(0,d,25);
mesh.x = linspace(0,a,26);
mesh.y = linspace(0,b,11);
mesh.z = linspace(0,d,32);
CSX = DefineRectGrid(CSX, 1,mesh);
% excitation
CSX = AddExcitation(CSX,'excite1',0,[1 1 1]);
p(1,1) = mesh.x(floor(end*2/3));
p(2,1) = mesh.y(floor(end*2/3));
p(3,1) = mesh.z(floor(end*2/3));
p(1,2) = mesh.x(floor(end*2/3)+1);
p(2,2) = mesh.y(floor(end*2/3)+1);
p(3,2) = mesh.z(floor(end*2/3)+1);
CSX = AddCurve( CSX, 'excite1', 0, p );
%dump
% CSX = AddDump(CSX,'Et_',0,2);
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(end) mesh.z(end)];
% CSX = AddBox(CSX,'Et_',0 , pos1,pos2);
% %dump
% CSX = AddDump(CSX,'Et2_',0,2);
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(1) mesh.z(end)];
% CSX = AddBox(CSX,'Et2_',0 , pos1,pos2);
%
% %dump
% CSX = AddDump(CSX,'Et3_',0,2);
% pos1 = [mesh.x(1) mesh.y(end-1) mesh.z(1)];
% pos2 = [mesh.x(end) mesh.y(end-1) mesh.z(end)];
% CSX = AddBox(CSX,'Et3_',0 , pos1,pos2);
%voltage calc
CSX = AddProbe(CSX,'ut1x',0);
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/4)+1) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
CSX = AddBox(CSX,'ut1x', 0 ,pos1,pos2);
CSX = AddProbe(CSX,'ut1y',0);
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)+1) mesh.z(floor(end/5))];
CSX = AddBox(CSX,'ut1y', 0 ,pos1,pos2);
CSX = AddProbe(CSX,'ut1z',0);
pos1 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
pos2 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5)+1)];
CSX = AddBox(CSX,'ut1z', 0 ,pos1,pos2);
%Write openEMS compatible xml-file
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
% run openEMS
folder = fileparts( mfilename('fullpath') );
Settings.LogFile = [folder '/' Sim_Path '/openEMS.log'];
Settings.Silent = SILENT;
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_options, Settings );
UI = ReadUI( {[Sim_Path '/ut1x'], [Sim_Path '/ut1y'], [Sim_Path '/ut1z']} );
%
% analysis
%
% remove excitation from time series
t_start = 7e-10; % FIXME to be calculated
t_idx_start = interp1( UI.TD{1}.t, 1:numel(UI.TD{1}.t), t_start, 'nearest' );
for n=1:numel(UI.TD)
UI.TD{n}.t = UI.TD{n}.t(t_idx_start:end);
UI.TD{n}.val = UI.TD{n}.val(t_idx_start:end);
[UI.FD{n}.f,UI.FD{n}.val] = FFT_time2freq( UI.TD{n}.t, UI.TD{n}.val );
end
f = UI.FD{1}.f;
ux = UI.FD{1}.val;
uy = UI.FD{2}.val;
uz = UI.FD{3}.val;
f_idx_start = interp1( f, 1:numel(f), f_start, 'nearest' );
f_idx_stop = interp1( f, 1:numel(f), f_stop, 'nearest' );
f = f(f_idx_start:f_idx_stop);
ux = ux(f_idx_start:f_idx_stop);
uy = uy(f_idx_start:f_idx_stop);
uz = uz(f_idx_start:f_idx_stop);
% analytic formula for resonant wavenumber
k = @(m,n,l) sqrt( (m*pi/a)^2 + (n*pi/b)^2 + (l*pi/d)^2 );
f_TE101 = c0/(2*pi) * k(1,0,1);
f_TE102 = c0/(2*pi) * k(1,0,2);
f_TE201 = c0/(2*pi) * k(2,0,1);
f_TE202 = c0/(2*pi) * k(2,0,2);
f_TM110 = c0/(2*pi) * k(1,1,0);
f_TM111 = c0/(2*pi) * k(1,1,1);
f_TE = [f_TE101 f_TE102 f_TE201 f_TE202];
f_TM = [f_TM110 f_TM111];
% calculate frequency limits
temp = [f_start f_TE f_stop];
f_outer1 = [];
f_outer2 = [];
for n=1:numel(temp)-1
f_outer1 = [f_outer1 temp(n) .* (1+outer_rel_limit)];
f_outer2 = [f_outer2 temp(n+1) .* (1-outer_rel_limit)];
end
temp = [f_start f_TM f_stop];
f_outer1_TM = [];
f_outer2_TM = [];
for n=1:numel(temp)-1
f_outer1_TM = [f_outer1_TM temp(n) .* (1+outer_rel_limit)];
f_outer2_TM = [f_outer2_TM temp(n+1) .* (1-outer_rel_limit)];
end
if ENABLE_PLOTS
figure
plot(f/1e9,abs(uy))
max1 = max(abs(uy));
hold on
plot( repmat(f_TE,2,1)/1e9, repmat([0; max1],1,numel(f_TE)), 'm-.', 'LineWidth', 2 )
plot( (repmat(f_TE,2,1) .* repmat(1-lower_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TE,2,1) .* repmat(1+upper_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TE,2,1) .* repmat([1-outer_rel_limit;1+outer_rel_limit],1,numel(f_TE)))/1e9, repmat(max1*min_rel_amplitude,2,numel(f_TE)), 'r-', 'LineWidth', 1 ) % freq limits
plot( [f_outer1;f_outer2]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1)), 'g-', 'LineWidth', 1 ) % amplitude limits
xlabel('Frequency (GHz)')
legend( {'u_y','theoretical'} )
title( 'TE-modes' )
figure
plot(f/1e9,abs(uz))
max1 = max(abs(uz));
hold on
plot( repmat(f_TM,2,1)/1e9, repmat([0; max1],1,numel(f_TM)), 'm-.', 'LineWidth', 2 )
plot( (repmat(f_TM,2,1) .* repmat(1-lower_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TM,2,1) .* repmat(1+upper_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
plot( (repmat(f_TM,2,1) .* repmat([1-lower_rel_limit_TM;1+upper_rel_limit_TM],1,numel(f_TM)))/1e9, repmat(max1*min_rel_amplitude_TM,2,numel(f_TM)), 'r-', 'LineWidth', 1 ) % freq limits
plot( [f_outer1_TM;f_outer2_TM]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1_TM)), 'g-', 'LineWidth', 1 ) % amplitude limits
xlabel('Frequency (GHz)')
legend( {'u_z','theoretical'} )
title( 'TM-modes' )
end
pass1 = check_frequency( f, abs(uy), f_TE*(1+upper_rel_limit), f_TE*(1-lower_rel_limit), min_rel_amplitude, 'inside' );
pass2 = check_frequency( f, abs(uz), f_TM*(1+upper_rel_limit_TM), f_TM*(1-lower_rel_limit_TM), min_rel_amplitude_TM, 'inside' );
pass3 = check_frequency( f, abs(uy), f_outer2, f_outer1, max_rel_amplitude, 'outside' );
pass4 = check_frequency( f, abs(uz), f_outer2_TM, f_outer1_TM, max_rel_amplitude, 'outside' );
pass = pass1 && pass2 && pass3 && pass4;
if pass
disp( 'combinedtests/cavity.m (resonance frequency): pass' );
else
disp( 'combinedtests/cavity.m (resonance frequency): * FAILED *' );
end
if pass && CLEANUP
rmdir( Sim_Path, 's' );
end
if ~pass && STOP_IF_FAILED
error 'test failed';
end