openEMS/FDTD/engine.cpp

280 lines
8.3 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine.h"
#include "extensions/engine_extension.h"
#include "extensions/operator_extension.h"
#include "tools/array_ops.h"
//! \brief construct an Engine instance
//! it's the responsibility of the caller to free the returned pointer
Engine* Engine::New(const Operator* op)
{
cout << "Create FDTD engine" << endl;
Engine* e = new Engine(op);
e->Init();
return e;
}
Engine::Engine(const Operator* op)
{
m_type = BASIC;
numTS = 0;
Op = op;
for (int n=0; n<3; ++n)
numLines[n] = Op->GetOriginalNumLines(n);
volt=NULL;
curr=NULL;
}
Engine::~Engine()
{
this->Reset();
}
void Engine::Init()
{
numTS = 0;
volt = Create_N_3DArray<FDTD_FLOAT>(numLines);
curr = Create_N_3DArray<FDTD_FLOAT>(numLines);
file_et.open( "et" );
file_ht.open( "ht" );
InitExtensions();
SortExtensionByPriority();
}
void Engine::InitExtensions()
{
for (size_t n=0; n<Op->GetNumberOfExtentions(); ++n)
{
Operator_Extension* op_ext = Op->GetExtension(n);
Engine_Extension* eng_ext = op_ext->CreateEngineExtention();
if (eng_ext)
{
eng_ext->SetEngine(this);
m_Eng_exts.push_back(eng_ext);
}
}
}
void Engine::ClearExtensions()
{
for (size_t n=0; n<m_Eng_exts.size(); ++n)
delete m_Eng_exts.at(n);
m_Eng_exts.clear();
}
bool CompareExtensions(Engine_Extension* i, Engine_Extension* j)
{
return (*i<*j);
}
void Engine::SortExtensionByPriority()
{
stable_sort(m_Eng_exts.begin(),m_Eng_exts.end(), CompareExtensions);
reverse(m_Eng_exts.begin(),m_Eng_exts.end());
}
void Engine::Reset()
{
Delete_N_3DArray(volt,numLines);
volt=NULL;
Delete_N_3DArray(curr,numLines);
curr=NULL;
file_et.close();
file_ht.close();
ClearExtensions();
}
void Engine::UpdateVoltages(unsigned int startX, unsigned int numX)
{
unsigned int pos[3];
bool shift[3];
pos[0] = startX;
//voltage updates
for (unsigned int posX=0; posX<numX; ++posX)
{
shift[0]=pos[0];
for (pos[1]=0; pos[1]<numLines[1]; ++pos[1])
{
shift[1]=pos[1];
for (pos[2]=0; pos[2]<numLines[2]; ++pos[2])
{
shift[2]=pos[2];
//do the updates here
//for x
volt[0][pos[0]][pos[1]][pos[2]] *= Op->vv[0][pos[0]][pos[1]][pos[2]];
volt[0][pos[0]][pos[1]][pos[2]] += Op->vi[0][pos[0]][pos[1]][pos[2]] * ( curr[2][pos[0]][pos[1]][pos[2]] - curr[2][pos[0]][pos[1]-shift[1]][pos[2]] - curr[1][pos[0]][pos[1]][pos[2]] + curr[1][pos[0]][pos[1]][pos[2]-shift[2]]);
//for y
volt[1][pos[0]][pos[1]][pos[2]] *= Op->vv[1][pos[0]][pos[1]][pos[2]];
volt[1][pos[0]][pos[1]][pos[2]] += Op->vi[1][pos[0]][pos[1]][pos[2]] * ( curr[0][pos[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]-shift[2]] - curr[2][pos[0]][pos[1]][pos[2]] + curr[2][pos[0]-shift[0]][pos[1]][pos[2]]);
//for z
volt[2][pos[0]][pos[1]][pos[2]] *= Op->vv[2][pos[0]][pos[1]][pos[2]];
volt[2][pos[0]][pos[1]][pos[2]] += Op->vi[2][pos[0]][pos[1]][pos[2]] * ( curr[1][pos[0]][pos[1]][pos[2]] - curr[1][pos[0]-shift[0]][pos[1]][pos[2]] - curr[0][pos[0]][pos[1]][pos[2]] + curr[0][pos[0]][pos[1]-shift[1]][pos[2]]);
}
}
++pos[0];
}
}
void Engine::ApplyVoltageExcite()
{
int exc_pos;
unsigned int ny;
unsigned int pos[3];
//soft voltage excitation here (E-field excite)
for (unsigned int n=0; n<Op->Exc->Volt_Count; ++n)
{
exc_pos = (int)numTS - (int)Op->Exc->Volt_delay[n];
exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->Exc->Length);
// if (n==0) cerr << numTS << " => " << Op->ExciteSignal[exc_pos] << endl;
ny = Op->Exc->Volt_dir[n];
pos[0]=Op->Exc->Volt_index[0][n];
pos[1]=Op->Exc->Volt_index[1][n];
pos[2]=Op->Exc->Volt_index[2][n];
SetVolt(ny,pos, GetVolt(ny,pos) + Op->Exc->Volt_amp[n]*Op->Exc->Signal_volt[exc_pos]);
}
// write the voltage excitation function into the file "et"
if (numTS < Op->Exc->Length)
file_et << numTS * Op->GetTimestep() << "\t" << Op->Exc->Signal_volt[numTS] << "\n"; // do not use std::endl here, because it will do an implicit flush
}
void Engine::UpdateCurrents(unsigned int startX, unsigned int numX)
{
unsigned int pos[3];
pos[0] = startX;
for (unsigned int posX=0; posX<numX; ++posX)
{
for (pos[1]=0; pos[1]<numLines[1]-1; ++pos[1])
{
for (pos[2]=0; pos[2]<numLines[2]-1; ++pos[2])
{
//do the updates here
//for x
curr[0][pos[0]][pos[1]][pos[2]] *= Op->ii[0][pos[0]][pos[1]][pos[2]];
curr[0][pos[0]][pos[1]][pos[2]] += Op->iv[0][pos[0]][pos[1]][pos[2]] * ( volt[2][pos[0]][pos[1]][pos[2]] - volt[2][pos[0]][pos[1]+1][pos[2]] - volt[1][pos[0]][pos[1]][pos[2]] + volt[1][pos[0]][pos[1]][pos[2]+1]);
//for y
curr[1][pos[0]][pos[1]][pos[2]] *= Op->ii[1][pos[0]][pos[1]][pos[2]];
curr[1][pos[0]][pos[1]][pos[2]] += Op->iv[1][pos[0]][pos[1]][pos[2]] * ( volt[0][pos[0]][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]+1] - volt[2][pos[0]][pos[1]][pos[2]] + volt[2][pos[0]+1][pos[1]][pos[2]]);
//for z
curr[2][pos[0]][pos[1]][pos[2]] *= Op->ii[2][pos[0]][pos[1]][pos[2]];
curr[2][pos[0]][pos[1]][pos[2]] += Op->iv[2][pos[0]][pos[1]][pos[2]] * ( volt[1][pos[0]][pos[1]][pos[2]] - volt[1][pos[0]+1][pos[1]][pos[2]] - volt[0][pos[0]][pos[1]][pos[2]] + volt[0][pos[0]][pos[1]+1][pos[2]]);
}
}
++pos[0];
}
}
void Engine::ApplyCurrentExcite()
{
int exc_pos;
unsigned int ny;
unsigned int pos[3];
//soft current excitation here (H-field excite)
for (unsigned int n=0; n<Op->Exc->Curr_Count; ++n)
{
exc_pos = (int)numTS - (int)Op->Exc->Curr_delay[n];
exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->Exc->Length);
// if (n==0) cerr << numTS << " => " << Op->ExciteSignal[exc_pos] << endl;
ny = Op->Exc->Curr_dir[n];
pos[0]=Op->Exc->Curr_index[0][n];
pos[1]=Op->Exc->Curr_index[1][n];
pos[2]=Op->Exc->Curr_index[2][n];
SetCurr(ny,pos, GetCurr(ny,pos) + Op->Exc->Curr_amp[n]*Op->Exc->Signal_curr[exc_pos]);
}
// write the current excitation function into the file "ht"
if (numTS < Op->Exc->Length)
file_ht << (numTS+0.5) * Op->GetTimestep() << "\t" << Op->Exc->Signal_curr[numTS] << "\n"; // do not use std::endl here, because it will do an implicit flush
}
void Engine::DoPreVoltageUpdates()
{
//execute extensions in reverse order -> highest priority gets access to the voltages last
for (int n=m_Eng_exts.size()-1; n>=0; --n)
m_Eng_exts.at(n)->DoPreVoltageUpdates();
}
void Engine::DoPostVoltageUpdates()
{
//execute extensions in normal order -> highest priority gets access to the voltages first
for (size_t n=0; n<m_Eng_exts.size(); ++n)
m_Eng_exts.at(n)->DoPostVoltageUpdates();
}
void Engine::Apply2Voltages()
{
//execute extensions in normal order -> highest priority gets access to the voltages first
for (size_t n=0; n<m_Eng_exts.size(); ++n)
m_Eng_exts.at(n)->Apply2Voltages();
}
void Engine::DoPreCurrentUpdates()
{
//execute extensions in reverse order -> highest priority gets access to the currents last
for (int n=m_Eng_exts.size()-1; n>=0; --n)
m_Eng_exts.at(n)->DoPreCurrentUpdates();
}
void Engine::DoPostCurrentUpdates()
{
//execute extensions in normal order -> highest priority gets access to the currents first
for (size_t n=0; n<m_Eng_exts.size(); ++n)
m_Eng_exts.at(n)->DoPostCurrentUpdates();
}
void Engine::Apply2Current()
{
//execute extensions in normal order -> highest priority gets access to the currents first
for (size_t n=0; n<m_Eng_exts.size(); ++n)
m_Eng_exts.at(n)->Apply2Current();
}
bool Engine::IterateTS(unsigned int iterTS)
{
for (unsigned int iter=0; iter<iterTS; ++iter)
{
//voltage updates with extensions
DoPreVoltageUpdates();
UpdateVoltages(0,numLines[0]);
DoPostVoltageUpdates();
Apply2Voltages();
ApplyVoltageExcite();
//current updates with extensions
DoPreCurrentUpdates();
UpdateCurrents(0,numLines[0]-1);
DoPostCurrentUpdates();
Apply2Current();
ApplyCurrentExcite();
++numTS;
}
return true;
}