openEMS/FDTD/engine_interface_fdtd.cpp

261 lines
7.4 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine_interface_fdtd.h"
Engine_Interface_FDTD::Engine_Interface_FDTD(Operator* op, Engine* eng) : Engine_Interface_Base(op)
{
m_Op = op;
m_Eng = eng;
}
Engine_Interface_FDTD::~Engine_Interface_FDTD()
{
}
double* Engine_Interface_FDTD::GetEField(const unsigned int* pos, double* out) const
{
return GetRawInterpolatedField(pos, out, 0);
}
double* Engine_Interface_FDTD::GetJField(const unsigned int* pos, double* out) const
{
return GetRawInterpolatedField(pos, out, 1);
}
double* Engine_Interface_FDTD::GetRotHField(const unsigned int* pos, double* out) const
{
return GetRawInterpolatedField(pos, out, 2);
}
double* Engine_Interface_FDTD::GetRawInterpolatedField(const unsigned int* pos, double* out, int type) const
{
unsigned int iPos[] = {pos[0],pos[1],pos[2]};
int nP,nPP;
double delta;
switch (m_InterpolType)
{
default:
case NO_INTERPOLATION:
for (int n=0; n<3; ++n)
out[n] = GetRawField(n,pos,type);
break;
case NODE_INTERPOLATE:
for (int n=0; n<3; ++n)
{
delta = m_Op->GetEdgeLength(n,iPos);
out[n] = GetRawField(n,iPos,type);
if (delta==0)
{
out[n]=0;
continue;
}
if (pos[n]==0)
{
out[n] *= 0.5; //make it consistant with upper PEC boundary
continue;
}
--iPos[n];
double deltaDown = m_Op->GetEdgeLength(n,iPos);
double deltaRel = delta / (delta+deltaDown);
out[n] = out[n]*(1.0-deltaRel) + (double)GetRawField(n,iPos,type)*deltaRel;
++iPos[n];
}
break;
case CELL_INTERPOLATE:
for (int n=0; n<3; ++n)
{
nP = (n+1)%3;
nPP = (n+2)%3;
if ((pos[0]==m_Op->GetNumberOfLines(0)-1) || (pos[1]==m_Op->GetNumberOfLines(1)-1) || (pos[2]==m_Op->GetNumberOfLines(2)-1))
{
out[n] = 0; //electric field outside the field domain is always zero
continue;
}
out[n]=GetRawField(n,iPos,type);
++iPos[nP];
out[n]+=GetRawField(n,iPos,type);
++iPos[nPP];
out[n]+=GetRawField(n,iPos,type);
--iPos[nP];
out[n]+=GetRawField(n,iPos,type);
--iPos[nPP];
out[n]/=4;
}
break;
}
return out;
}
double* Engine_Interface_FDTD::GetHField(const unsigned int* pos, double* out) const
{
unsigned int iPos[] = {pos[0],pos[1],pos[2]};
int nP,nPP;
double delta;
switch (m_InterpolType)
{
default:
case NO_INTERPOLATION:
out[0] = m_Eng->GetCurr(0,pos) / m_Op->GetEdgeLength(0,pos,true);
out[1] = m_Eng->GetCurr(1,pos) / m_Op->GetEdgeLength(1,pos,true);
out[2] = m_Eng->GetCurr(2,pos) / m_Op->GetEdgeLength(2,pos,true);
break;
case NODE_INTERPOLATE:
for (int n=0; n<3; ++n)
{
nP = (n+1)%3;
nPP = (n+2)%3;
if ((pos[0]==m_Op->GetNumberOfLines(0)-1) || (pos[1]==m_Op->GetNumberOfLines(1)-1) || (pos[2]==m_Op->GetNumberOfLines(2)-1) || (pos[nP]==0) || (pos[nPP]==0))
{
out[n] = 0;
continue;
}
out[n]=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
--iPos[nP];
out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
--iPos[nPP];
out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
++iPos[nP];
out[n]+=m_Eng->GetCurr(n,iPos)/m_Op->GetEdgeLength(n,iPos,true);
++iPos[nPP];
out[n]/=4;
}
break;
case CELL_INTERPOLATE:
for (int n=0; n<3; ++n)
{
delta = m_Op->GetEdgeLength(n,iPos,true);
out[n] = m_Eng->GetCurr(n,iPos);
if ((pos[n]>=m_Op->GetNumberOfLines(n)-1))
{
out[n] = 0; //magnetic field on the outer boundaries is always zero
continue;
}
++iPos[n];
double deltaUp = m_Op->GetEdgeLength(n,iPos,true);
double deltaRel = delta / (delta+deltaUp);
out[n] = out[n]*(1.0-deltaRel)/delta + (double)m_Eng->GetCurr(n,iPos)/deltaUp*deltaRel;
--iPos[n];
}
break;
}
return out;
}
double Engine_Interface_FDTD::CalcVoltageIntegral(const unsigned int* start, const unsigned int* stop) const
{
double result=0;
for (int n=0; n<3; ++n)
{
if (start[n]<stop[n])
{
unsigned int pos[3]={start[0],start[1],start[2]};
for (; pos[n]<stop[n]; ++pos[n])
result += m_Eng->GetVolt(n,pos[0],pos[1],pos[2]);
}
else
{
unsigned int pos[3]={stop[0],stop[1],stop[2]};
for (; pos[n]<start[n]; ++pos[n])
result -= m_Eng->GetVolt(n,pos[0],pos[1],pos[2]);
}
}
return result;
}
double Engine_Interface_FDTD::GetRawField(unsigned int n, const unsigned int* pos, int type) const
{
double value = m_Eng->GetVolt(n,pos[0],pos[1],pos[2]);
double delta = m_Op->GetEdgeLength(n,pos);
if ((type==0) && (delta))
return value/delta;
if ((type==1) && (m_Op->m_kappa) && (delta))
return value*m_Op->m_kappa[n][pos[0]][pos[1]][pos[2]]/delta;
if (type==2) //calc rot(H)
{
int nP = (n+1)%3;
int nPP = (n+2)%3;
unsigned int locPos[] = {pos[0],pos[1],pos[2]};
double area = m_Op->GetEdgeArea(n,pos);
value = m_Eng->GetCurr(nPP,pos);
value -= m_Eng->GetCurr(nP,pos);
if (pos[nPP]>0)
{
--locPos[nPP];
value += m_Eng->GetCurr(nP,locPos);
++locPos[nPP];
}
if (pos[nP]>0)
{
--locPos[nP];
value -= m_Eng->GetCurr(nPP,locPos);
}
return value/area;
}
return 0.0;
}
double Engine_Interface_FDTD::CalcFastEnergy() const
{
double E_energy=0.0;
double H_energy=0.0;
unsigned int pos[3];
if (m_Eng->GetType()==Engine::BASIC)
{
for (pos[0]=0; pos[0]<m_Op->GetNumberOfLines(0)-1; ++pos[0])
{
for (pos[1]=0; pos[1]<m_Op->GetNumberOfLines(1)-1; ++pos[1])
{
for (pos[2]=0; pos[2]<m_Op->GetNumberOfLines(2)-1; ++pos[2])
{
E_energy+=m_Eng->Engine::GetVolt(0,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(0,pos[0],pos[1],pos[2]);
E_energy+=m_Eng->Engine::GetVolt(1,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(1,pos[0],pos[1],pos[2]);
E_energy+=m_Eng->Engine::GetVolt(2,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetVolt(2,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->Engine::GetCurr(0,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(0,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->Engine::GetCurr(1,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(1,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->Engine::GetCurr(2,pos[0],pos[1],pos[2]) * m_Eng->Engine::GetCurr(2,pos[0],pos[1],pos[2]);
}
}
}
}
else
{
for (pos[0]=0; pos[0]<m_Op->GetNumberOfLines(0)-1; ++pos[0])
{
for (pos[1]=0; pos[1]<m_Op->GetNumberOfLines(1)-1; ++pos[1])
{
for (pos[2]=0; pos[2]<m_Op->GetNumberOfLines(2)-1; ++pos[2])
{
E_energy+=m_Eng->GetVolt(0,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(0,pos[0],pos[1],pos[2]);
E_energy+=m_Eng->GetVolt(1,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(1,pos[0],pos[1],pos[2]);
E_energy+=m_Eng->GetVolt(2,pos[0],pos[1],pos[2]) * m_Eng->GetVolt(2,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->GetCurr(0,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(0,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->GetCurr(1,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(1,pos[0],pos[1],pos[2]);
H_energy+=m_Eng->GetCurr(2,pos[0],pos[1],pos[2]) * m_Eng->GetCurr(2,pos[0],pos[1],pos[2]);
}
}
}
}
return __EPS0__*E_energy + __MUE0__*H_energy;
}