174 lines
5.3 KiB
Matlab
174 lines
5.3 KiB
Matlab
function [port] = calcTLPort( port, SimDir, f, varargin)
|
|
% [port] = calcTLPort( port, SimDir, f, varargin)
|
|
%
|
|
% Calculate voltages and currents, the propagation constant beta
|
|
% and the characteristic impedance ZL of the given transmission line port.
|
|
%
|
|
% The port has to be created by e.g. AddMSLPort().
|
|
%
|
|
% input:
|
|
% port: return value of e.g. AddMSLPort()
|
|
% SimDir: directory, where the simulation files are
|
|
% f: frequency vector for DFT
|
|
%
|
|
% variable input:
|
|
% 'RefImpedance': - use a given reference impedance to calculate inc and
|
|
% ref voltages and currents
|
|
% - default is given port or calculated line impedance
|
|
% 'RefPlaneShift': - use a given reference plane shift from port beginning
|
|
% for a desired phase correction
|
|
% - default is the measurement plane
|
|
% - the plane shift has to be given in drawing units!
|
|
% 'SwitchDirection': 0/1, switch assumed direction of propagation
|
|
%
|
|
% output:
|
|
% % output signals/values in time domain (TD):
|
|
% port.ut.tot total voltage (time-domain)
|
|
% port.ut.time voltage time vector
|
|
% port.it.tot total current (time-domain)
|
|
% port.it.time current time vector
|
|
%
|
|
% % output signals/values in frequency domain (FD):
|
|
% port.f the given frequency fector
|
|
% port.uf.tot/inc/ref total, incoming and reflected voltage
|
|
% port.if.tot/inc/ref total, incoming and reflected current
|
|
% port.beta: propagation constant
|
|
% port.ZL: characteristic line impedance
|
|
% port.ZL_ref used refernce impedance
|
|
%
|
|
% example:
|
|
% port{1} = calcTLPort( port{1}, Sim_Path, f, 'RefImpedance', 50);
|
|
%
|
|
% reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations",
|
|
% IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996
|
|
%
|
|
% openEMS matlab interface
|
|
% -----------------------
|
|
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
|
%
|
|
% See also AddMSLPort, calcPort
|
|
|
|
if (iscell(port))
|
|
for n=1:numel(port)
|
|
port{n}=calcTLPort(port{n}, SimDir, f, varargin{:});
|
|
end
|
|
return;
|
|
end
|
|
|
|
if ((strcmpi(port.type,'MSL')~=1) && (strcmpi(port.type,'Coaxial')~=1) && (strcmpi(port.type,'StripLine')~=1))
|
|
error('openEMS:calcTLPort','error, type is not a transmission line port');
|
|
end
|
|
|
|
% check
|
|
if abs((port.v_delta(1) - port.v_delta(2)) / port.v_delta(1))>1e-6
|
|
warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' );
|
|
end
|
|
|
|
|
|
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%set defaults
|
|
ref_ZL = -1;
|
|
ref_shift = nan;
|
|
switch_dir = 1;
|
|
|
|
UI_args = {};
|
|
|
|
for n=1:2:numel(varargin)
|
|
if (strcmp(varargin{n},'RefPlaneShift')==1);
|
|
ref_shift = varargin{n+1};
|
|
elseif (strcmp(varargin{n},'RefImpedance')==1);
|
|
ref_ZL = varargin{n+1};
|
|
elseif (strcmpi(varargin{n},'SwitchDirection')==1);
|
|
if (varargin{n+1})
|
|
switch_dir = -1;
|
|
end
|
|
else
|
|
UI_args(end+1) = varargin(n);
|
|
UI_args(end+1) = varargin(n+1);
|
|
end
|
|
end
|
|
|
|
if (strcmpi(port.type,'StripLine')==1)
|
|
U1 = ReadUI( port.U_filename(:,1), SimDir, f, UI_args{:} );
|
|
U2 = ReadUI( port.U_filename(:,1), SimDir, f, UI_args{:} );
|
|
U = U1;
|
|
for n=1:3
|
|
U.TD{n}.val = U1.TD{n}.val+U2.TD{n}.val;
|
|
U.FD{n}.val = U1.FD{n}.val+U2.FD{n}.val;
|
|
end
|
|
else
|
|
U = ReadUI( port.U_filename, SimDir, f, UI_args{:} );
|
|
end
|
|
% read time domain data (multiples files)
|
|
I = ReadUI( port.I_filename, SimDir, f, UI_args{:} );
|
|
|
|
% time domain signals
|
|
port.ut.time = U.TD{2}.t;
|
|
port.ut.tot = U.TD{2}.val;
|
|
|
|
port.it.time = I.TD{1}.t;
|
|
port.it.tot = switch_dir*(I.TD{1}.val + I.TD{2}.val) / 2; % interpolate to same position as v
|
|
|
|
% store the original frequency domain waveforms
|
|
u_f = U.FD{2}.val;
|
|
i_f = switch_dir*(I.FD{1}.val + I.FD{2}.val) / 2; % shift to same position as v
|
|
|
|
f = U.FD{2}.f;
|
|
Et = U.FD{2}.val;
|
|
dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(port.v_delta(1:2))) * port.drawingunit);
|
|
Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et
|
|
dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(port.i_delta(1)) * port.drawingunit);
|
|
|
|
beta = sqrt( - dEt .* dHt ./ (Ht .* Et) );
|
|
beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper)
|
|
|
|
% determine ZL
|
|
ZL = sqrt(Et .* dEt ./ (Ht .* dHt));
|
|
|
|
% if (strcmpi(port.type,'Coaxial'))
|
|
% port.ZL = Z0/2/pi/ref_index*log(port.r_o/port.r_i);
|
|
% end
|
|
|
|
% reference plane shift (lossless)
|
|
if ~isnan(ref_shift)
|
|
ref_shift = ref_shift * port.LengthScale;
|
|
% shift to the beginning of MSL
|
|
ref_shift = ref_shift - port.measplanepos;
|
|
ref_shift = ref_shift * port.drawingunit;
|
|
|
|
% store the shifted frequency domain waveforms
|
|
phase = real(beta)*ref_shift;
|
|
U.FD{1}.val = u_f .* cos(-phase) + 1i * i_f.*ZL .* sin(-phase);
|
|
I.FD{1}.val = i_f .* cos(-phase) + 1i * u_f./ZL .* sin(-phase);
|
|
|
|
u_f = U.FD{1}.val;
|
|
i_f = I.FD{1}.val;
|
|
end
|
|
|
|
if (ref_ZL < 0)
|
|
ref_ZL = ZL;
|
|
end
|
|
|
|
port.ZL = ZL;
|
|
port.beta = beta;
|
|
port.ZL_ref = ref_ZL;
|
|
|
|
port.f = f;
|
|
uf_inc = 0.5 * ( u_f + i_f .* ref_ZL );
|
|
if_inc = 0.5 * ( i_f + u_f ./ ref_ZL );
|
|
|
|
uf_ref = u_f - uf_inc;
|
|
if_ref = if_inc - i_f;
|
|
|
|
port.uf.tot = u_f;
|
|
port.uf.inc = uf_inc;
|
|
port.uf.ref = uf_ref;
|
|
|
|
port.if.tot = i_f;
|
|
port.if.inc = if_inc;
|
|
port.if.ref = if_ref;
|
|
|
|
port.raw.U = U;
|
|
port.raw.I = I;
|