158 lines
4.8 KiB
Matlab
158 lines
4.8 KiB
Matlab
close all
|
|
clear
|
|
clc
|
|
|
|
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
abs_length = 500;
|
|
length = 10000;
|
|
unit = 1e-3;
|
|
rad = 300;
|
|
mesh_max = 15;
|
|
N_alpha = ceil(rad * pi / mesh_max) * 2;
|
|
mesh_res = [mesh_max 2*pi/N_alpha mesh_max];
|
|
|
|
do_Half_Waveguide = 1;
|
|
|
|
EPS0 = 8.85418781762e-12;
|
|
MUE0 = 1.256637062e-6;
|
|
C0 = 1/sqrt(EPS0*MUE0);
|
|
|
|
f0 = 400e6;
|
|
|
|
p11 = 1.841;
|
|
kc = p11 / rad /unit;
|
|
k = 2*pi*f0/C0;
|
|
fc = C0*kc/2/pi;
|
|
beta = sqrt(k^2 - kc^2);
|
|
|
|
kc = kc*unit;
|
|
func_Er = [ num2str(-1/kc^2,15) '/rho*cos(a)*j1(' num2str(kc,15) '*rho)'];
|
|
func_Ea = [ num2str(1/kc,15) '*sin(a)*0.5*(j0(' num2str(kc,15) '*rho)-jn(2,' num2str(kc,15) '*rho))'];
|
|
|
|
%% define openEMS options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
openEMS_opts = '';
|
|
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
|
|
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
|
% openEMS_opts = [openEMS_opts ' --debug-operator'];
|
|
|
|
if (do_Half_Waveguide)
|
|
Sim_Path = 'tmp_half_CWG_CC';
|
|
else
|
|
Sim_Path = 'tmp_full_CWG_CC';
|
|
end
|
|
Sim_CSX = 'Circ_WG_CC.xml';
|
|
|
|
if (exist(Sim_Path,'dir'))
|
|
rmdir(Sim_Path,'s');
|
|
end
|
|
mkdir(Sim_Path);
|
|
|
|
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
FDTD = InitCylindricalFDTD(1e5,1e-5,'OverSampling',10);
|
|
% T = 1/f0;
|
|
% FDTD = SetCustomExcite(FDTD,f0,[ '(1-exp(-1*(t/' num2str(T) ')^2) ) * sin(2*pi*' num2str(f0) '*t)' ]);
|
|
FDTD = SetSinusExcite(FDTD,f0);
|
|
BC = [0 0 0 0 0 0];
|
|
FDTD = SetBoundaryCond(FDTD,BC);
|
|
|
|
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
CSX = InitCSX();
|
|
mesh.x = 0:mesh_res(1):rad;
|
|
if (do_Half_Waveguide)
|
|
mesh.y = linspace(-pi/2,pi/2,N_alpha/2);
|
|
else
|
|
mesh.y = linspace(-pi,pi,N_alpha)+pi/2;
|
|
end
|
|
y_delta = mesh.y(2) - mesh.y(1);
|
|
mesh.z = 0 : mesh_res(3) : length;
|
|
CSX = DefineRectGrid(CSX, 1e-3,mesh);
|
|
|
|
%% fake pml %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
start = [0 mesh.y(1)-y_delta length-abs_length];
|
|
stop = [rad*1.2 mesh.y(end)+y_delta length];
|
|
finalKappa = 0.3/abs_length^4;
|
|
finalSigma = finalKappa*MUE0/EPS0;
|
|
CSX = AddMaterial(CSX,'pml');
|
|
CSX = SetMaterialProperty(CSX,'pml','Kappa',finalKappa);
|
|
CSX = SetMaterialProperty(CSX,'pml','Sigma',finalSigma);
|
|
CSX = SetMaterialWeight(CSX,'pml','Kappa',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
|
CSX = SetMaterialWeight(CSX,'pml','Sigma',['pow(abs(z)-' num2str(length-abs_length) ',4)']);
|
|
CSX = AddBox(CSX,'pml',0 ,start,stop);
|
|
|
|
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
|
|
weight{1} = func_Er;
|
|
weight{2} = func_Ea;
|
|
weight{3} = 0;
|
|
CSX = SetExcitationWeight(CSX, 'excite', weight );
|
|
start(3)=-.5;
|
|
stop(3)=0.5;
|
|
CSX = AddBox(CSX,'excite', 5 ,start,stop);
|
|
|
|
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
CSX = AddDump(CSX,'Et','FileType',1,'DumpMode',0,'SubSampling','2,2,5');
|
|
start = [mesh.x(1) , mesh.y(1)-y_delta , 0];
|
|
stop = [mesh.x(end) , mesh.y(end)+y_delta , length];
|
|
CSX = AddBox(CSX,'Et',0 , start,stop);
|
|
|
|
CSX = AddDump(CSX,'Ht','FileType',1,'DumpType',1,'DumpMode',0,'SubSampling','2,2,5');
|
|
CSX = AddBox(CSX,'Ht',0 , start,stop);
|
|
|
|
% % dumpt r-z-plane to vtk-file
|
|
% CSX = AddDump(CSX,'Et_rz_','FileType',0,'DumpMode',2,'SubSampling','1,1,5');
|
|
% start = [mesh.x(1) , 0 , 0];
|
|
% stop = [mesh.x(end) , 0 , length];
|
|
% CSX = AddBox(CSX,'Et_rz_',0 , start,stop);
|
|
|
|
%% define voltage calc boxes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
CSX = AddProbe(CSX,'ut_exc',0);
|
|
start = [ 0 0 0 ];stop = [ rad 0 0 ];
|
|
CSX = AddBox(CSX,'ut_exc', 0 ,start,stop);
|
|
|
|
CSX = AddProbe(CSX,'ut_1',0);
|
|
start = [ 0 0 length/2 ];stop = [ rad 0 length/2 ];
|
|
CSX = AddBox(CSX,'ut_1', 0 ,start,stop);
|
|
|
|
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
|
|
|
%% cd to working dir and run openEMS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
savePath = pwd();
|
|
cd(Sim_Path); %cd to working dir
|
|
args = [Sim_CSX ' ' openEMS_opts];
|
|
invoke_openEMS(args);
|
|
cd(savePath);
|
|
|
|
%% do the plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
UI = ReadUI('ut_1',[Sim_Path '/']);
|
|
plot(UI.TD{1}.t,UI.TD{1}.val);
|
|
grid on;
|
|
|
|
file = [Sim_Path '/Et.h5'];
|
|
z_planes = 1;
|
|
timestep = 10;
|
|
for z =z_planes
|
|
figure
|
|
if exist(file,'file')
|
|
mesh = ReadHDF5Mesh(file);
|
|
fields = ReadHDF5FieldData(file);
|
|
|
|
[ALPHA RHO] = meshgrid(double(mesh.lines{1}),double(mesh.lines{2}));
|
|
X = RHO.*cos(ALPHA);
|
|
Y = RHO.*sin(ALPHA);
|
|
|
|
Er = double( fields.values{timestep}(:,:,z,1) );
|
|
Ea = double( fields.values{timestep}(:,:,z,2) );
|
|
Ez = double( fields.values{timestep}(:,:,z,3) );
|
|
|
|
Ex = Er.*cos(ALPHA) - Ea.*sin(ALPHA);
|
|
Ey = Er.*sin(ALPHA) + Ea.*cos(ALPHA);
|
|
|
|
quiver(X,Y,Ex,Ey)
|
|
axis equal
|
|
title(['z : ' num2str(mesh.lines{2}(z)) ' ts: ' int2str(n)] );
|
|
Ex(10,5)
|
|
pause(1)
|
|
end
|
|
end
|