1284 lines
39 KiB
C++
1284 lines
39 KiB
C++
/*
|
|
* Copyright (C) 2010-2015 Thorsten Liebig (Thorsten.Liebig@gmx.de)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "openems.h"
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "tools/array_ops.h"
|
|
#include "tools/useful.h"
|
|
#include "FDTD/operator_cylinder.h"
|
|
#include "FDTD/operator_cylindermultigrid.h"
|
|
#include "FDTD/engine_multithread.h"
|
|
#include "FDTD/operator_multithread.h"
|
|
#include "FDTD/extensions/operator_ext_excitation.h"
|
|
#include "FDTD/extensions/operator_ext_tfsf.h"
|
|
#include "FDTD/extensions/operator_ext_mur_abc.h"
|
|
#include "FDTD/extensions/operator_ext_upml.h"
|
|
#include "FDTD/extensions/operator_ext_lorentzmaterial.h"
|
|
#include "FDTD/extensions/operator_ext_conductingsheet.h"
|
|
#include "FDTD/extensions/operator_ext_steadystate.h"
|
|
#include "FDTD/extensions/engine_ext_steadystate.h"
|
|
#include "FDTD/engine_interface_fdtd.h"
|
|
#include "FDTD/engine_interface_cylindrical_fdtd.h"
|
|
#include "Common/processvoltage.h"
|
|
#include "Common/processcurrent.h"
|
|
#include "Common/processfieldprobe.h"
|
|
#include "Common/processmodematch.h"
|
|
#include "Common/processfields_td.h"
|
|
#include "Common/processfields_fd.h"
|
|
#include "Common/processfields_sar.h"
|
|
#include <hdf5.h> // only for H5get_libversion()
|
|
#include <boost/version.hpp> // only for BOOST_LIB_VERSION
|
|
#include <vtkVersion.h>
|
|
|
|
//external libs
|
|
#include "tinyxml.h"
|
|
#include "ContinuousStructure.h"
|
|
#include "CSPropProbeBox.h"
|
|
#include "CSPrimBox.h"
|
|
#include "CSPropDumpBox.h"
|
|
|
|
using namespace std;
|
|
|
|
double CalcDiffTime(timeval t1, timeval t2)
|
|
{
|
|
double s_diff = t1.tv_sec - t2.tv_sec;
|
|
s_diff += (t1.tv_usec-t2.tv_usec)*1e-6;
|
|
return s_diff;
|
|
}
|
|
|
|
openEMS::openEMS()
|
|
{
|
|
setlocale(LC_NUMERIC, "en_US.UTF-8");
|
|
FDTD_Op=NULL;
|
|
FDTD_Eng=NULL;
|
|
Eng_Ext_SSD=NULL;
|
|
m_CSX=NULL;
|
|
PA=NULL;
|
|
CylinderCoords = false;
|
|
Enable_Dumps = true;
|
|
DebugMat = false;
|
|
DebugOp = false;
|
|
m_debugCSX = false;
|
|
m_debugBox = m_debugPEC = m_no_simulation = false;
|
|
m_DumpStats = false;
|
|
endCrit = 1e-6;
|
|
m_OverSampling = 4;
|
|
m_CellConstantMaterial=false;
|
|
|
|
m_engine = EngineType_Multithreaded; //default engine type
|
|
m_engine_numThreads = 0;
|
|
|
|
m_Abort = false;
|
|
m_Exc = 0;
|
|
|
|
m_TS_method=3;
|
|
m_TS=0;
|
|
m_TS_fac=1.0;
|
|
m_maxTime=0.0;
|
|
|
|
for (int n=0;n<6;++n)
|
|
{
|
|
m_BC_type[n] = 0;
|
|
m_PML_size[n] = 8;
|
|
m_Mur_v_ph[n] = 0;
|
|
}
|
|
}
|
|
|
|
openEMS::~openEMS()
|
|
{
|
|
Reset();
|
|
}
|
|
|
|
void openEMS::Reset()
|
|
{
|
|
if (PA) PA->DeleteAll();
|
|
delete PA;
|
|
PA=0;
|
|
delete FDTD_Eng;
|
|
FDTD_Eng=0;
|
|
delete FDTD_Op;
|
|
FDTD_Op=0;
|
|
delete m_CSX;
|
|
m_CSX=0;
|
|
delete m_Exc;
|
|
m_Exc=0;
|
|
}
|
|
|
|
void openEMS::showUsage()
|
|
{
|
|
cout << " Usage: openEMS <FDTD_XML_FILE> [<options>...]" << endl << endl;
|
|
cout << " <options>" << endl;
|
|
cout << "\t--disable-dumps\t\tDisable all field dumps for faster simulation" << endl;
|
|
cout << "\t--debug-material\tDump material distribution to a vtk file for debugging" << endl;
|
|
cout << "\t--debug-PEC\t\tDump metal distribution to a vtk file for debugging" << endl;
|
|
cout << "\t--debug-operator\tDump operator to vtk file for debugging" << endl;
|
|
cout << "\t--debug-boxes\t\tDump e.g. probe boxes to vtk file for debugging" << endl;
|
|
cout << "\t--debug-CSX\t\tWrite CSX geometry file to debugCSX.xml" << endl;
|
|
cout << "\t--engine=<type>\t\tChoose engine type" << endl;
|
|
cout << "\t\t--engine=fastest\t\tfastest available engine (default)" << endl;
|
|
cout << "\t\t--engine=basic\t\t\tbasic FDTD engine" << endl;
|
|
cout << "\t\t--engine=sse\t\t\tengine using sse vector extensions" << endl;
|
|
cout << "\t\t--engine=sse-compressed\t\tengine using compressed operator + sse vector extensions" << endl;
|
|
#ifdef MPI_SUPPORT
|
|
cout << "\t\t--engine=MPI\t\t\tengine using compressed operator + sse vector extensions + MPI parallel processing" << endl;
|
|
cout << "\t\t--engine=multithreaded\t\tengine using compressed operator + sse vector extensions + MPI + multithreading" << endl;
|
|
#else
|
|
cout << "\t\t--engine=multithreaded\t\tengine using compressed operator + sse vector extensions + multithreading" << endl;
|
|
#endif
|
|
cout << "\t--numThreads=<n>\tForce use n threads for multithreaded engine (needs: --engine=multithreaded)" << endl;
|
|
cout << "\t--no-simulation\t\tonly run preprocessing; do not simulate" << endl;
|
|
cout << "\t--dump-statistics\tdump simulation statistics to '" << __OPENEMS_RUN_STAT_FILE__ << "' and '" << __OPENEMS_STAT_FILE__ << "'" << endl;
|
|
cout << "\n\t Additional global arguments " << endl;
|
|
g_settings.ShowArguments(cout,"\t");
|
|
cout << endl;
|
|
}
|
|
|
|
//! \brief processes a command line argument
|
|
//! \return true if argument is known
|
|
//! \return false if argument is unknown
|
|
bool openEMS::parseCommandLineArgument( const char *argv )
|
|
{
|
|
if (!argv)
|
|
return false;
|
|
|
|
if (strcmp(argv,"--disable-dumps")==0)
|
|
{
|
|
cout << "openEMS - disabling all field dumps" << endl;
|
|
SetEnableDumps(false);
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--debug-material")==0)
|
|
{
|
|
cout << "openEMS - dumping material to 'material_dump.vtk'" << endl;
|
|
DebugMaterial();
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--debug-operator")==0)
|
|
{
|
|
cout << "openEMS - dumping operator to 'operator_dump.vtk'" << endl;
|
|
DebugOperator();
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--debug-boxes")==0)
|
|
{
|
|
cout << "openEMS - dumping boxes to 'box_dump*.vtk'" << endl;
|
|
DebugBox();
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--debug-PEC")==0)
|
|
{
|
|
cout << "openEMS - dumping PEC info to 'PEC_dump.vtk'" << endl;
|
|
DebugPEC();
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--debug-CSX")==0)
|
|
{
|
|
cout << "openEMS - dumping CSX geometry to 'debugCSX.xml'" << endl;
|
|
DebugCSX();
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--engine=basic")==0)
|
|
{
|
|
cout << "openEMS - enabled basic engine" << endl;
|
|
m_engine = EngineType_Basic;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--engine=sse")==0)
|
|
{
|
|
cout << "openEMS - enabled sse engine" << endl;
|
|
m_engine = EngineType_SSE;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--engine=sse-compressed")==0)
|
|
{
|
|
cout << "openEMS - enabled compressed sse engine" << endl;
|
|
m_engine = EngineType_SSE_Compressed;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--engine=multithreaded")==0)
|
|
{
|
|
cout << "openEMS - enabled multithreading" << endl;
|
|
m_engine = EngineType_Multithreaded;
|
|
return true;
|
|
}
|
|
else if (strncmp(argv,"--numThreads=",13)==0)
|
|
{
|
|
this->SetNumberOfThreads(atoi(argv+13));
|
|
cout << "openEMS - fixed number of threads: " << m_engine_numThreads << endl;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--engine=fastest")==0)
|
|
{
|
|
cout << "openEMS - enabled multithreading engine" << endl;
|
|
m_engine = EngineType_Multithreaded;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--no-simulation")==0)
|
|
{
|
|
cout << "openEMS - disabling simulation => preprocessing only" << endl;
|
|
m_no_simulation = true;
|
|
return true;
|
|
}
|
|
else if (strcmp(argv,"--dump-statistics")==0)
|
|
{
|
|
cout << "openEMS - dump simulation statistics to '" << __OPENEMS_RUN_STAT_FILE__ << "' and '" << __OPENEMS_STAT_FILE__ << "'" << endl;
|
|
m_DumpStats = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void openEMS::SetNumberOfThreads(int val)
|
|
{
|
|
if ((val<0) || (val>boost::thread::hardware_concurrency()))
|
|
val = boost::thread::hardware_concurrency();
|
|
m_engine_numThreads = val;
|
|
}
|
|
|
|
string openEMS::GetExtLibsInfo(string prefix)
|
|
{
|
|
stringstream str;
|
|
|
|
str << prefix << "Used external libraries:" << endl;
|
|
str << prefix << "\t" << ContinuousStructure::GetInfoLine(true) << endl;
|
|
|
|
// libhdf5
|
|
unsigned int major, minor, release;
|
|
if (H5get_libversion( &major, &minor, &release ) >= 0)
|
|
{
|
|
str << prefix << "\t" << "hdf5 -- Version: " << major << '.' << minor << '.' << release << endl;
|
|
str << prefix << "\t" << " compiled against: " H5_VERS_INFO << endl;
|
|
}
|
|
|
|
// tinyxml
|
|
str << prefix << "\t" << "tinyxml -- compiled against: " << TIXML_MAJOR_VERSION << '.' << TIXML_MINOR_VERSION << '.' << TIXML_PATCH_VERSION << endl;
|
|
|
|
// fparser
|
|
str << prefix << "\t" << "fparser" << endl;
|
|
|
|
// boost
|
|
str << prefix << "\t" << "boost -- compiled against: " << BOOST_LIB_VERSION << endl;
|
|
|
|
//vtk
|
|
str << prefix << "\t" << "vtk -- Version: " << vtkVersion::GetVTKMajorVersion() << "." << vtkVersion::GetVTKMinorVersion() << "." << vtkVersion::GetVTKBuildVersion() << endl;
|
|
str << prefix << "\t" << " compiled against: " << VTK_VERSION << endl;
|
|
|
|
return str.str();
|
|
}
|
|
|
|
void openEMS::WelcomeScreen()
|
|
{
|
|
#if defined(_LP64) || defined(_WIN64)
|
|
string bits = "64bit";
|
|
#else
|
|
string bits = "32bit";
|
|
#endif
|
|
|
|
cout << " ---------------------------------------------------------------------- " << endl;
|
|
cout << " | openEMS " << bits << " -- version " GIT_VERSION << endl;
|
|
cout << " | (C) 2010-2023 Thorsten Liebig <thorsten.liebig@gmx.de> GPL license" << endl;
|
|
cout << " ---------------------------------------------------------------------- " << endl;
|
|
cout << openEMS::GetExtLibsInfo("\t") << endl;
|
|
}
|
|
|
|
bool openEMS::SetupBoundaryConditions()
|
|
{
|
|
FDTD_Op->SetBoundaryCondition(m_BC_type); //operator only knows about PEC and PMC, everything else is defined by extensions (see below)
|
|
|
|
/**************************** create all operator/engine extensions here !!!! **********************************/
|
|
for (int n=0; n<6; ++n)
|
|
{
|
|
FDTD_Op->SetBCSize(n, 0);
|
|
if (m_BC_type[n]==2) //Mur-ABC
|
|
{
|
|
FDTD_Op->SetBCSize(n, 1);
|
|
Operator_Ext_Mur_ABC* op_ext_mur = new Operator_Ext_Mur_ABC(FDTD_Op);
|
|
op_ext_mur->SetDirection(n/2,n%2);
|
|
if (m_Mur_v_ph[n]>0)
|
|
op_ext_mur->SetPhaseVelocity(m_Mur_v_ph[n]);
|
|
FDTD_Op->AddExtension(op_ext_mur);
|
|
}
|
|
if (m_BC_type[n]==3)
|
|
FDTD_Op->SetBCSize(n, m_PML_size[n]);
|
|
}
|
|
|
|
|
|
//create the upml
|
|
Operator_Ext_UPML::Create_UPML(FDTD_Op, m_BC_type, m_PML_size, string());
|
|
|
|
return true;
|
|
}
|
|
|
|
Engine_Interface_FDTD* openEMS::NewEngineInterface(int multigridlevel)
|
|
{
|
|
Operator_CylinderMultiGrid* op_cyl_mg = dynamic_cast<Operator_CylinderMultiGrid*>(FDTD_Op);
|
|
while (op_cyl_mg && multigridlevel>0)
|
|
{
|
|
int mgl = op_cyl_mg->GetMultiGridLevel();
|
|
if (mgl==multigridlevel)
|
|
{
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << __func__ << ": Operator with requested multi-grid level found." << endl;
|
|
return new Engine_Interface_Cylindrical_FDTD(op_cyl_mg);
|
|
}
|
|
Operator_Cylinder* op_cyl_inner = op_cyl_mg->GetInnerOperator();
|
|
op_cyl_mg = dynamic_cast<Operator_CylinderMultiGrid*>(op_cyl_inner);
|
|
if (op_cyl_mg==NULL) //inner most operator reached
|
|
{
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << __func__ << ": Operator with highest multi-grid level chosen." << endl;
|
|
return new Engine_Interface_Cylindrical_FDTD(op_cyl_inner);
|
|
}
|
|
// try next level
|
|
}
|
|
Operator_Cylinder* op_cyl = dynamic_cast<Operator_Cylinder*>(FDTD_Op);
|
|
if (op_cyl)
|
|
return new Engine_Interface_Cylindrical_FDTD(op_cyl);
|
|
Operator_sse* op_sse = dynamic_cast<Operator_sse*>(FDTD_Op);
|
|
if (op_sse)
|
|
return new Engine_Interface_SSE_FDTD(op_sse);
|
|
return new Engine_Interface_FDTD(FDTD_Op);
|
|
}
|
|
|
|
void openEMS::SetVerboseLevel(int level)
|
|
{
|
|
g_settings.SetVerboseLevel(level);
|
|
}
|
|
|
|
bool openEMS::SetupProcessing()
|
|
{
|
|
//*************** setup processing ************//
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Setting up processing..." << endl;
|
|
|
|
unsigned int Nyquist = FDTD_Op->GetExcitationSignal()->GetNyquistNum();
|
|
PA = new ProcessingArray(Nyquist);
|
|
|
|
double start[3];
|
|
double stop[3];
|
|
bool l_MultiBox = false;
|
|
vector<CSProperties*> Probes = m_CSX->GetPropertyByType(CSProperties::PROBEBOX);
|
|
for (size_t i=0; i<Probes.size(); ++i)
|
|
{
|
|
CSPropProbeBox* pb = Probes.at(i)->ToProbeBox();
|
|
if (!pb)
|
|
continue;
|
|
//check whether one or more probe boxes are defined
|
|
l_MultiBox = (pb->GetQtyPrimitives()>1);
|
|
|
|
for (size_t nb=0; nb<pb->GetQtyPrimitives(); ++nb)
|
|
{
|
|
CSPrimitives* prim = pb->GetPrimitive(nb);
|
|
if (prim!=NULL)
|
|
{
|
|
double bnd[6] = {0,0,0,0,0,0};
|
|
prim->GetBoundBox(bnd,true);
|
|
start[0]= bnd[0];
|
|
start[1]=bnd[2];
|
|
start[2]=bnd[4];
|
|
stop[0] = bnd[1];
|
|
stop[1] =bnd[3];
|
|
stop[2] =bnd[5];
|
|
|
|
ProcessIntegral* proc = NULL;
|
|
if (pb->GetProbeType()==0)
|
|
{
|
|
CSPrimBox* box = prim->ToBox();
|
|
if (!(box) || box->GetDimension()!=1)
|
|
{
|
|
cerr << "openEMS::SetupProcessing: Error: Probe primitive type or dimension not suitable ... skipping probe " << pb->GetName() << endl;
|
|
continue;
|
|
}
|
|
// use the direction and coordinates of the box
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
start[n] = box->GetCoord(2*n);
|
|
stop[n] = box->GetCoord(2*n+1);
|
|
}
|
|
ProcessVoltage* procVolt = new ProcessVoltage(NewEngineInterface());
|
|
proc=procVolt;
|
|
}
|
|
else if (pb->GetProbeType()==1)
|
|
{
|
|
ProcessCurrent* procCurr = new ProcessCurrent(NewEngineInterface());
|
|
proc=procCurr;
|
|
}
|
|
else if (pb->GetProbeType()==2)
|
|
proc = new ProcessFieldProbe(NewEngineInterface(),0);
|
|
else if (pb->GetProbeType()==3)
|
|
proc = new ProcessFieldProbe(NewEngineInterface(),1);
|
|
else if ((pb->GetProbeType()==10) || (pb->GetProbeType()==11))
|
|
{
|
|
ProcessModeMatch* pmm = new ProcessModeMatch(NewEngineInterface());
|
|
pmm->SetFieldType(pb->GetProbeType()-10);
|
|
pmm->SetModeFunction(0,pb->GetAttributeValue("ModeFunctionX"));
|
|
pmm->SetModeFunction(1,pb->GetAttributeValue("ModeFunctionY"));
|
|
pmm->SetModeFunction(2,pb->GetAttributeValue("ModeFunctionZ"));
|
|
proc = pmm;
|
|
}
|
|
else
|
|
{
|
|
cerr << "openEMS::SetupFDTD: Warning: Probe type " << pb->GetProbeType() << " of property '" << pb->GetName() << "' is unknown..." << endl;
|
|
continue;
|
|
}
|
|
if (CylinderCoords)
|
|
proc->SetMeshType(Processing::CYLINDRICAL_MESH);
|
|
if ((pb->GetProbeType()==1) || (pb->GetProbeType()==3))
|
|
{
|
|
proc->SetDualTime(true);
|
|
proc->SetDualMesh(true);
|
|
}
|
|
if (pb->GetProbeType()==11)
|
|
proc->SetDualTime(true);
|
|
proc->SetProcessInterval(Nyquist/m_OverSampling);
|
|
if (pb->GetStartTime()>0 || pb->GetStopTime()>0)
|
|
proc->SetProcessStartStopTime(pb->GetStartTime(), pb->GetStopTime());
|
|
proc->AddFrequency(pb->GetFDSamples());
|
|
proc->GetNormalDir(pb->GetNormalDir());
|
|
if (l_MultiBox==false)
|
|
proc->SetName(pb->GetName());
|
|
else
|
|
proc->SetName(pb->GetName(),nb);
|
|
proc->DefineStartStopCoord(start,stop);
|
|
if (g_settings.showProbeDiscretization())
|
|
proc->ShowSnappedCoords();
|
|
proc->SetWeight(pb->GetWeighting());
|
|
PA->AddProcessing(proc);
|
|
prim->SetPrimitiveUsed(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
vector<CSProperties*> DumpProps = m_CSX->GetPropertyByType(CSProperties::DUMPBOX);
|
|
for (size_t i=0; i<DumpProps.size(); ++i)
|
|
{
|
|
ProcessFields* ProcField=NULL;
|
|
|
|
//check whether one or more probe boxes are defined
|
|
l_MultiBox = (DumpProps.at(i)->GetQtyPrimitives()>1);
|
|
|
|
for (size_t nb=0; nb<DumpProps.at(i)->GetQtyPrimitives(); ++nb)
|
|
{
|
|
|
|
CSPrimitives* prim = DumpProps.at(i)->GetPrimitive(nb);
|
|
if (prim!=NULL)
|
|
{
|
|
double bnd[6] = {0,0,0,0,0,0};
|
|
prim->GetBoundBox(bnd,true);
|
|
start[0]= bnd[0];
|
|
start[1]=bnd[2];
|
|
start[2]=bnd[4];
|
|
stop[0] = bnd[1];
|
|
stop[1] =bnd[3];
|
|
stop[2] =bnd[5];
|
|
CSPropDumpBox* db = DumpProps.at(i)->ToDumpBox();
|
|
if (db)
|
|
{
|
|
if ((db->GetDumpType()>=0) && (db->GetDumpType()<=5))
|
|
ProcField = new ProcessFieldsTD(NewEngineInterface(db->GetMultiGridLevel()));
|
|
else if ((db->GetDumpType()>=10) && (db->GetDumpType()<=15))
|
|
ProcField = new ProcessFieldsFD(NewEngineInterface(db->GetMultiGridLevel()));
|
|
else if ( ((db->GetDumpType()>=20) && (db->GetDumpType()<=22)) || (db->GetDumpType()==29) )
|
|
{
|
|
ProcessFieldsSAR* procSAR = new ProcessFieldsSAR(NewEngineInterface(db->GetMultiGridLevel()));
|
|
ProcField = procSAR;
|
|
string method = db->GetAttributeValue("SAR_Method");
|
|
if (!method.empty())
|
|
procSAR->SetSARAveragingMethod(method);
|
|
// use (center)-cell based conductivity only
|
|
procSAR->SetUseCellConductivity(true);
|
|
}
|
|
else
|
|
cerr << "openEMS::SetupFDTD: unknown dump box type... skipping!" << endl;
|
|
if (ProcField)
|
|
{
|
|
ProcField->SetEnable(Enable_Dumps);
|
|
ProcField->SetProcessInterval(Nyquist/m_OverSampling);
|
|
if (db->GetStopTime()>0 || db->GetStartTime()>0)
|
|
ProcField->SetProcessStartStopTime(db->GetStartTime(), db->GetStopTime());
|
|
if ((db->GetDumpType()==1) || (db->GetDumpType()==11))
|
|
{
|
|
ProcField->SetDualTime(true);
|
|
//make dualMesh the default mesh for h-field dumps, maybe overwritten by interpolation type (node-interpolation)
|
|
ProcField->SetDualMesh(true);
|
|
}
|
|
if (db->GetDumpType()>=10)
|
|
{
|
|
ProcField->AddFrequency(db->GetFDSamples());
|
|
ProcField->SetDumpType((ProcessFields::DumpType)(db->GetDumpType()-10));
|
|
}
|
|
else
|
|
ProcField->SetDumpType((ProcessFields::DumpType)db->GetDumpType());
|
|
|
|
if (db->GetDumpType()==20)
|
|
ProcField->SetDumpType(ProcessFields::SAR_LOCAL_DUMP);
|
|
if (db->GetDumpType()==21)
|
|
ProcField->SetDumpType(ProcessFields::SAR_1G_DUMP);
|
|
if (db->GetDumpType()==22)
|
|
ProcField->SetDumpType(ProcessFields::SAR_10G_DUMP);
|
|
if (db->GetDumpType()==29)
|
|
ProcField->SetDumpType(ProcessFields::SAR_RAW_DATA);
|
|
|
|
//SetupMaterialStorages() has previewed storage needs... refresh here to prevent cleanup!!!
|
|
if ( ProcField->NeedPermittivity() && Enable_Dumps)
|
|
FDTD_Op->SetMaterialStoreFlags(0,true);
|
|
if ( ProcField->NeedConductivity() && Enable_Dumps)
|
|
FDTD_Op->SetMaterialStoreFlags(1,true);
|
|
if ( ProcField->NeedPermeability() && Enable_Dumps)
|
|
FDTD_Op->SetMaterialStoreFlags(2,true);
|
|
|
|
ProcField->SetDumpMode((Engine_Interface_Base::InterpolationType)db->GetDumpMode());
|
|
ProcField->SetFileType((ProcessFields::FileType)db->GetFileType());
|
|
if (CylinderCoords)
|
|
ProcField->SetMeshType(Processing::CYLINDRICAL_MESH);
|
|
if (db->GetSubSampling())
|
|
for (int n=0; n<3; ++n)
|
|
ProcField->SetSubSampling(db->GetSubSampling(n),n);
|
|
if (db->GetOptResolution())
|
|
for (int n=0; n<3; ++n)
|
|
ProcField->SetOptResolution(db->GetOptResolution(n),n);
|
|
|
|
if (l_MultiBox==false)
|
|
ProcField->SetName(db->GetName());
|
|
else
|
|
ProcField->SetName(db->GetName(),nb);
|
|
|
|
ProcField->SetFileName(ProcField->GetName());
|
|
ProcField->DefineStartStopCoord(start,stop);
|
|
if (g_settings.showProbeDiscretization())
|
|
ProcField->ShowSnappedCoords();
|
|
PA->AddProcessing(ProcField);
|
|
prim->SetPrimitiveUsed(true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool openEMS::SetupMaterialStorages()
|
|
{
|
|
vector<CSProperties*> DumpProps = m_CSX->GetPropertyByType(CSProperties::DUMPBOX);
|
|
for (size_t i=0; i<DumpProps.size(); ++i)
|
|
{
|
|
CSPropDumpBox* db = DumpProps.at(i)->ToDumpBox();
|
|
if (!db)
|
|
continue;
|
|
if (db->GetQtyPrimitives()==0)
|
|
continue;
|
|
//check for current density dump types
|
|
if ( ((db->GetDumpType()==2) || (db->GetDumpType()==12) || // current density storage
|
|
(db->GetDumpType()==20) || (db->GetDumpType()==21) || (db->GetDumpType()==22)) && // SAR dump types
|
|
Enable_Dumps )
|
|
FDTD_Op->SetMaterialStoreFlags(1,true); //tell operator to store kappa material data
|
|
if ( ((db->GetDumpType()==4) || (db->GetDumpType()==14)) || Enable_Dumps) // electric flux density storage
|
|
FDTD_Op->SetMaterialStoreFlags(0,true); //tell operator to store epsR material data
|
|
if ( ((db->GetDumpType()==5) || (db->GetDumpType()==15)) || Enable_Dumps) // magnetic flux density storage
|
|
FDTD_Op->SetMaterialStoreFlags(2,true); //tell operator to store mueR material data
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void openEMS::SetupCylinderMultiGrid(std::string val)
|
|
{
|
|
m_CC_MultiGrid.clear();
|
|
m_CC_MultiGrid = SplitString2Double(val,',');
|
|
}
|
|
|
|
bool openEMS::SetupOperator()
|
|
{
|
|
if (CylinderCoords)
|
|
{
|
|
if (m_CC_MultiGrid.size()>0)
|
|
{
|
|
FDTD_Op = Operator_CylinderMultiGrid::New(m_CC_MultiGrid, m_engine_numThreads);
|
|
if (FDTD_Op==NULL)
|
|
FDTD_Op = Operator_Cylinder::New(m_engine_numThreads);
|
|
}
|
|
else
|
|
FDTD_Op = Operator_Cylinder::New(m_engine_numThreads);
|
|
}
|
|
else if (m_engine == EngineType_SSE)
|
|
{
|
|
FDTD_Op = Operator_sse::New();
|
|
}
|
|
else if (m_engine == EngineType_SSE_Compressed)
|
|
{
|
|
FDTD_Op = Operator_SSE_Compressed::New();
|
|
}
|
|
else if (m_engine == EngineType_Multithreaded)
|
|
{
|
|
FDTD_Op = Operator_Multithread::New(m_engine_numThreads);
|
|
}
|
|
else
|
|
{
|
|
FDTD_Op = Operator::New();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void openEMS::Set_BC_Type(int idx, int type)
|
|
{
|
|
if ((idx<0) || (idx>5))
|
|
return;
|
|
m_BC_type[idx] = type;
|
|
}
|
|
|
|
int openEMS::Get_BC_Type(int idx)
|
|
{
|
|
if ((idx<0) || (idx>5))
|
|
return -1;
|
|
return m_BC_type[idx];
|
|
}
|
|
|
|
void openEMS::Set_BC_PML(int idx, unsigned int size)
|
|
{
|
|
if ((idx<0) || (idx>5))
|
|
return;
|
|
m_BC_type[idx] = 3;
|
|
m_PML_size[idx] = size;
|
|
}
|
|
|
|
int openEMS::Get_PML_Size(int idx)
|
|
{
|
|
if ((idx<0) || (idx>5))
|
|
return -1;
|
|
if (m_BC_type[idx]!=3)
|
|
return -1; // return -1 if BC was *not* a PML
|
|
return m_PML_size[idx];
|
|
}
|
|
|
|
void openEMS::Set_Mur_PhaseVel(int idx, double val)
|
|
{
|
|
if ((idx<0) || (idx>5))
|
|
return;
|
|
m_Mur_v_ph[idx] = val;
|
|
}
|
|
|
|
bool openEMS::ParseFDTDSetup(std::string file)
|
|
{
|
|
Reset();
|
|
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Read openEMS xml file: " << file << " ..." << endl;
|
|
|
|
TiXmlDocument doc(file);
|
|
if (!doc.LoadFile())
|
|
{
|
|
cerr << "openEMS: Error File-Loading failed!!! File: " << file << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Read openEMS Settings..." << endl;
|
|
TiXmlElement* openEMSxml = doc.FirstChildElement("openEMS");
|
|
if (openEMSxml==NULL)
|
|
{
|
|
cerr << "Can't read openEMS ... " << endl;
|
|
exit(-1);
|
|
}
|
|
TiXmlElement* FDTD_Opts = openEMSxml->FirstChildElement("FDTD");
|
|
|
|
if (FDTD_Opts==NULL)
|
|
{
|
|
cerr << "Can't read openEMS FDTD Settings... " << endl;
|
|
exit(-1);
|
|
}
|
|
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Read Geometry..." << endl;
|
|
ContinuousStructure* csx = new ContinuousStructure();
|
|
string EC(csx->ReadFromXML(openEMSxml));
|
|
if (EC.empty()==false)
|
|
cerr << EC << endl;
|
|
this->SetCSX(csx);
|
|
|
|
|
|
return this->Parse_XML_FDTDSetup(FDTD_Opts);
|
|
}
|
|
|
|
bool openEMS::Parse_XML_FDTDSetup(TiXmlElement* FDTD_Opts)
|
|
{
|
|
double dhelp=0;
|
|
FDTD_Opts->QueryDoubleAttribute("NumberOfTimesteps",&dhelp);
|
|
if (dhelp<0)
|
|
this->SetNumberOfTimeSteps(0);
|
|
else
|
|
this->SetNumberOfTimeSteps((unsigned int)dhelp);
|
|
|
|
int ihelp = 0;
|
|
FDTD_Opts->QueryIntAttribute("CylinderCoords",&ihelp);
|
|
if (ihelp==1)
|
|
{
|
|
this->SetCylinderCoords(true);
|
|
const char* cchelp = FDTD_Opts->Attribute("MultiGrid");
|
|
if (cchelp!=NULL)
|
|
this->SetupCylinderMultiGrid(string(cchelp));
|
|
}
|
|
|
|
dhelp = 0;
|
|
FDTD_Opts->QueryDoubleAttribute("MaxTime",&dhelp);
|
|
if (dhelp>0)
|
|
this->SetMaxTime(dhelp);
|
|
|
|
dhelp = 0;
|
|
FDTD_Opts->QueryDoubleAttribute("endCriteria",&dhelp);
|
|
if (dhelp==0)
|
|
this->SetEndCriteria(1e-6);
|
|
else
|
|
this->SetEndCriteria(dhelp);
|
|
|
|
ihelp = 0;
|
|
FDTD_Opts->QueryIntAttribute("OverSampling",&ihelp);
|
|
if (ihelp>1)
|
|
this->SetOverSampling(ihelp);
|
|
|
|
// check for cell constant material averaging
|
|
if (FDTD_Opts->QueryIntAttribute("CellConstantMaterial",&ihelp)==TIXML_SUCCESS)
|
|
this->SetCellConstantMaterial(ihelp==1);
|
|
|
|
TiXmlElement* BC = FDTD_Opts->FirstChildElement("BoundaryCond");
|
|
if (BC==NULL)
|
|
{
|
|
cerr << "Can't read openEMS boundary cond Settings... " << endl;
|
|
exit(-3);
|
|
}
|
|
|
|
// const char* tmp = BC->Attribute("PML_Grading");
|
|
// string pml_gradFunc;
|
|
// if (tmp)
|
|
// pml_gradFunc = string(tmp);
|
|
|
|
string bound_names[] = {"xmin","xmax","ymin","ymax","zmin","zmax"};
|
|
string s_bc;
|
|
for (int n=0; n<6; ++n)
|
|
{
|
|
int EC = BC->QueryIntAttribute(bound_names[n].c_str(),&ihelp);
|
|
if (EC==TIXML_SUCCESS)
|
|
{
|
|
this->Set_BC_Type(n, ihelp);
|
|
continue;
|
|
}
|
|
if (EC==TIXML_WRONG_TYPE)
|
|
{
|
|
const char* tmp = BC->Attribute(bound_names[n].c_str());
|
|
if (tmp)
|
|
s_bc = string(tmp);
|
|
else
|
|
cerr << "openEMS::SetupBoundaryConditions: Warning, boundary condition for \"" << bound_names[n] << "\" unknown... set to PEC " << endl;
|
|
if (s_bc=="PEC")
|
|
this->Set_BC_Type(n, 0);
|
|
else if (s_bc=="PMC")
|
|
this->Set_BC_Type(n, 1);
|
|
else if (s_bc=="MUR")
|
|
this->Set_BC_Type(n, 2);
|
|
else if (strncmp(s_bc.c_str(),"PML_=",4)==0)
|
|
this->Set_BC_PML(n, atoi(s_bc.c_str()+4));
|
|
else
|
|
cerr << "openEMS::SetupBoundaryConditions: Warning, boundary condition for \"" << bound_names[n] << "\" unknown... set to PEC " << endl;
|
|
}
|
|
else
|
|
cerr << "openEMS::SetupBoundaryConditions: Warning, boundary condition for \"" << bound_names[n] << "\" not found... set to PEC " << endl;
|
|
}
|
|
|
|
//read general mur phase velocity
|
|
if (BC->QueryDoubleAttribute("MUR_PhaseVelocity",&dhelp) == TIXML_SUCCESS)
|
|
for (int n=0;n<6;++n)
|
|
this->Set_Mur_PhaseVel(n, dhelp);
|
|
|
|
string mur_v_ph_names[6] = {"MUR_PhaseVelocity_xmin", "MUR_PhaseVelocity_xmax", "MUR_PhaseVelocity_ymin", "MUR_PhaseVelocity_ymax", "MUR_PhaseVelocity_zmin", "MUR_PhaseVelocity_zmax"};
|
|
for (int n=0; n<6; ++n)
|
|
if (BC->QueryDoubleAttribute(mur_v_ph_names[n].c_str(),&dhelp) == TIXML_SUCCESS)
|
|
this->Set_Mur_PhaseVel(n, dhelp);
|
|
|
|
TiXmlElement* m_Excite_Elem = FDTD_Opts->FirstChildElement("Excitation");
|
|
if (!m_Excite_Elem)
|
|
{
|
|
cerr << "Excitation::setupExcitation: Error, can't read openEMS excitation settings... " << endl;
|
|
return false;
|
|
}
|
|
|
|
Excitation* exc = this->InitExcitation();
|
|
double f0=0, fc=0, f_max=0;
|
|
ihelp = -1;
|
|
m_Excite_Elem->QueryIntAttribute("Type",&ihelp);
|
|
switch (ihelp)
|
|
{
|
|
case Excitation::GaissianPulse:
|
|
m_Excite_Elem->QueryDoubleAttribute("f0",&f0);
|
|
m_Excite_Elem->QueryDoubleAttribute("fc",&fc);
|
|
exc->SetupGaussianPulse(f0, fc);
|
|
break;
|
|
case Excitation::Sinusoidal: // sinusoidal excite
|
|
m_Excite_Elem->QueryDoubleAttribute("f0",&f0);
|
|
exc->SetupSinusoidal(f0);
|
|
break;
|
|
case Excitation::DiracPulse:
|
|
FDTD_Opts->QueryDoubleAttribute("f_max",&f_max);
|
|
exc->SetupDiracPulse(f_max);
|
|
break;
|
|
case Excitation::Step:
|
|
FDTD_Opts->QueryDoubleAttribute("f_max",&f_max);
|
|
exc->SetupStepExcite(f_max);
|
|
break;
|
|
case Excitation::CustomExcite:
|
|
m_Excite_Elem->QueryDoubleAttribute("f0",&f0);
|
|
FDTD_Opts->QueryDoubleAttribute("f_max",&f_max);
|
|
exc->SetupCustomExcite(m_Excite_Elem->Attribute("Function"), f0, f_max);
|
|
break;
|
|
}
|
|
|
|
if (FDTD_Opts->QueryIntAttribute("TimeStepMethod",&ihelp)==TIXML_SUCCESS)
|
|
this->SetTimeStepMethod(ihelp);
|
|
if (FDTD_Opts->QueryDoubleAttribute("TimeStep",&dhelp)==TIXML_SUCCESS)
|
|
this->SetTimeStep(dhelp);
|
|
if (FDTD_Opts->QueryDoubleAttribute("TimeStepFactor",&dhelp)==TIXML_SUCCESS)
|
|
this->SetTimeStepFactor(dhelp);
|
|
return true;
|
|
}
|
|
|
|
void openEMS::SetGaussExcite(double f0, double fc)
|
|
{
|
|
this->InitExcitation();
|
|
m_Exc->SetupGaussianPulse(f0, fc);
|
|
}
|
|
|
|
void openEMS::SetSinusExcite(double f0)
|
|
{
|
|
this->InitExcitation();
|
|
m_Exc->SetupSinusoidal(f0);
|
|
}
|
|
|
|
void openEMS::SetDiracExcite(double f_max)
|
|
{
|
|
this->InitExcitation();
|
|
m_Exc->SetupDiracPulse(f_max);
|
|
}
|
|
|
|
void openEMS::SetStepExcite(double f_max)
|
|
{
|
|
this->InitExcitation();
|
|
m_Exc->SetupStepExcite(f_max);
|
|
}
|
|
|
|
Excitation* openEMS::InitExcitation()
|
|
{
|
|
delete m_Exc;
|
|
m_Exc = new Excitation();
|
|
return m_Exc;
|
|
}
|
|
|
|
void openEMS::SetCSX(ContinuousStructure* csx)
|
|
{
|
|
delete m_CSX;
|
|
m_CSX = csx;
|
|
}
|
|
|
|
int openEMS::SetupFDTD()
|
|
{
|
|
timeval startTime;
|
|
gettimeofday(&startTime,NULL);
|
|
|
|
if (m_CSX==NULL)
|
|
{
|
|
cerr << "openEMS::SetupFDTD: Error: CSXCAD is not set!" << endl;
|
|
return 3;
|
|
}
|
|
if (m_CSX==NULL)
|
|
{
|
|
cerr << "openEMS::SetupFDTD: Error: CSXCAD is not set!" << endl;
|
|
return 3;
|
|
}
|
|
std::string ec = m_CSX->Update();
|
|
if (!ec.empty())
|
|
cerr << ec << endl;
|
|
if (g_settings.GetVerboseLevel()>2)
|
|
m_CSX->ShowPropertyStatus(cerr);
|
|
|
|
if (CylinderCoords)
|
|
if (m_CSX->GetCoordInputType()!=CYLINDRICAL)
|
|
{
|
|
cerr << "openEMS::SetupFDTD: Warning: Coordinate system found in the CSX file is not a cylindrical. Forcing to cylindrical coordinate system!" << endl;
|
|
m_CSX->SetCoordInputType(CYLINDRICAL); //tell CSX to use cylinder-coords
|
|
}
|
|
|
|
if (m_debugCSX)
|
|
m_CSX->Write2XML("debugCSX.xml");
|
|
|
|
//*************** setup operator ************//
|
|
if (SetupOperator()==false)
|
|
return 2;
|
|
|
|
// default material averaging is quarter cell averaging
|
|
FDTD_Op->SetQuarterCellMaterialAvg();
|
|
|
|
if (m_CellConstantMaterial)
|
|
{
|
|
FDTD_Op->SetCellConstantMaterial();
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
cout << "Enabling constant cell material assumption." << endl;
|
|
}
|
|
|
|
if (m_Exc==NULL)
|
|
{
|
|
cerr << "openEMS::SetupFDTD: Error, excitation is not defined! Abort!" << endl;
|
|
return 3;
|
|
}
|
|
|
|
FDTD_Op->SetExcitationSignal(m_Exc);
|
|
FDTD_Op->AddExtension(new Operator_Ext_Excitation(FDTD_Op));
|
|
if (!CylinderCoords)
|
|
FDTD_Op->AddExtension(new Operator_Ext_TFSF(FDTD_Op));
|
|
|
|
if (FDTD_Op->SetGeometryCSX(m_CSX)==false) return(2);
|
|
|
|
SetupBoundaryConditions();
|
|
|
|
FDTD_Op->SetTimeStepMethod(m_TS_method);
|
|
|
|
if (m_TS>0)
|
|
FDTD_Op->SetTimestep(m_TS);
|
|
if (m_TS_fac<1)
|
|
FDTD_Op->SetTimestepFactor(m_TS_fac);
|
|
|
|
// Is a steady state detection requested
|
|
Operator_Ext_SteadyState* Op_Ext_SSD = NULL;
|
|
if (m_Exc->GetSignalPeriod()>0)
|
|
{
|
|
cout << "Create a steady state detection using a period of " << m_Exc->GetSignalPeriod() << " s" << endl;
|
|
Op_Ext_SSD = new Operator_Ext_SteadyState(FDTD_Op, m_Exc->GetSignalPeriod());
|
|
unsigned int pos[3];
|
|
for (int p=0;p<3;++p)
|
|
pos[p] = FDTD_Op->GetNumberOfLines(p)/2;
|
|
Op_Ext_SSD->Add_E_Probe(pos, 0);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 1);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 2);
|
|
|
|
for (int n=0;n<3;++n)
|
|
{
|
|
for (int p=0;p<3;++p)
|
|
pos[p] = FDTD_Op->GetNumberOfLines(p)/2;
|
|
|
|
pos[n] *= 1/4;
|
|
Op_Ext_SSD->Add_E_Probe(pos, 0);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 1);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 2);
|
|
|
|
pos[n] *= 3/4;
|
|
Op_Ext_SSD->Add_E_Probe(pos, 0);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 1);
|
|
Op_Ext_SSD->Add_E_Probe(pos, 2);
|
|
}
|
|
FDTD_Op->AddExtension(Op_Ext_SSD);
|
|
}
|
|
|
|
if ((m_CSX->GetQtyPropertyType(CSProperties::LORENTZMATERIAL)>0) || (m_CSX->GetQtyPropertyType(CSProperties::DEBYEMATERIAL)>0))
|
|
FDTD_Op->AddExtension(new Operator_Ext_LorentzMaterial(FDTD_Op));
|
|
if (m_CSX->GetQtyPropertyType(CSProperties::CONDUCTINGSHEET)>0)
|
|
FDTD_Op->AddExtension(new Operator_Ext_ConductingSheet(FDTD_Op, m_Exc->GetMaxFreq()));
|
|
|
|
//check all properties to request material storage during operator creation...
|
|
SetupMaterialStorages();
|
|
|
|
/******************* create the EC-FDTD operator *****************************/
|
|
Operator::DebugFlags debugFlags = Operator::None;
|
|
if (DebugMat)
|
|
debugFlags |= Operator::debugMaterial;
|
|
if (DebugOp)
|
|
debugFlags |= Operator::debugOperator;
|
|
if (m_debugPEC)
|
|
debugFlags |= Operator::debugPEC;
|
|
|
|
FDTD_Op->CalcECOperator( debugFlags );
|
|
/*******************************************************************************/
|
|
|
|
//reset flags for material storage, if no dump-box resets it to true, it will be cleaned up...
|
|
FDTD_Op->SetMaterialStoreFlags(0,false);
|
|
FDTD_Op->SetMaterialStoreFlags(1,false);
|
|
FDTD_Op->SetMaterialStoreFlags(2,false);
|
|
FDTD_Op->SetMaterialStoreFlags(3,false);
|
|
|
|
unsigned int maxTime_TS = (unsigned int)(m_maxTime/FDTD_Op->GetTimestep());
|
|
if ((m_maxTime>0) && (maxTime_TS<NrTS))
|
|
NrTS = maxTime_TS;
|
|
|
|
if (!m_Exc->buildExcitationSignal(NrTS))
|
|
exit(2);
|
|
m_Exc->DumpVoltageExcite("et");
|
|
m_Exc->DumpCurrentExcite("ht");
|
|
|
|
timeval OpDoneTime;
|
|
gettimeofday(&OpDoneTime,NULL);
|
|
|
|
if (g_settings.GetVerboseLevel()>0)
|
|
{
|
|
FDTD_Op->ShowStat();
|
|
FDTD_Op->ShowExtStat();
|
|
cout << "Creation time for operator: " << CalcDiffTime(OpDoneTime,startTime) << " s" << endl;
|
|
}
|
|
cout << "FDTD simulation size: " << FDTD_Op->GetNumberOfLines(0) << "x" << FDTD_Op->GetNumberOfLines(1) << "x" << FDTD_Op->GetNumberOfLines(2) << " --> " << FDTD_Op->GetNumberCells() << " FDTD cells " << endl;
|
|
cout << "FDTD timestep is: " <<FDTD_Op->GetTimestep() << " s; Nyquist rate: " << m_Exc->GetNyquistNum() << " timesteps @" << CalcNyquistFrequency(m_Exc->GetNyquistNum(),FDTD_Op->GetTimestep()) << " Hz" << endl;
|
|
if (m_Exc->GetNyquistNum()>1000)
|
|
cerr << "openEMS::SetupFDTD: Warning, the timestep seems to be very small --> long simulation. Check your mesh!?" << endl;
|
|
|
|
if (m_Exc->GetSignalPeriod()==0)
|
|
{
|
|
cout << "Excitation signal length is: " << m_Exc->GetLength() << " timesteps (" << m_Exc->GetLength()*FDTD_Op->GetTimestep() << "s)" << endl;
|
|
cout << "Max. number of timesteps: " << NrTS << " ( --> " << (double)NrTS/(double)(m_Exc->GetLength()) << " * Excitation signal length)" << endl;
|
|
if ( ((double)NrTS/(double)m_Exc->GetLength() < 3) && (m_Exc->GetExciteType()==0))
|
|
cerr << "openEMS::SetupFDTD: Warning, max. number of timesteps is smaller than three times the excitation. " << endl << \
|
|
"\tYou may want to choose a higher number of max. timesteps... " << endl;
|
|
}
|
|
else
|
|
{
|
|
int p = int(m_Exc->GetSignalPeriod()/FDTD_Op->GetTimestep());
|
|
cout << "Excitation signal period is: " << p << " timesteps (" << m_Exc->GetSignalPeriod() << "s)" << endl;
|
|
cout << "Max. number of timesteps: " << NrTS << " ( --> " << (double)NrTS/(double)(m_Exc->GetLength()) << " * Excitation signal period)" << endl;
|
|
if (NrTS/p < 3)
|
|
cerr << "openEMS::SetupFDTD: Warning, max. number of timesteps is smaller than three times the excitation signal period. " << endl << \
|
|
"\tYou may want to choose a higher number of max. timesteps... " << endl;
|
|
}
|
|
|
|
if (m_no_simulation)
|
|
{
|
|
// simulation was disabled (to generate debug output only)
|
|
return 1;
|
|
}
|
|
|
|
//create FDTD engine
|
|
FDTD_Eng = FDTD_Op->CreateEngine();
|
|
|
|
if (Op_Ext_SSD)
|
|
{
|
|
Eng_Ext_SSD = dynamic_cast<Engine_Ext_SteadyState*>(Op_Ext_SSD->GetEngineExtention());
|
|
Eng_Ext_SSD->SetEngineInterface(this->NewEngineInterface());
|
|
}
|
|
|
|
//setup all processing classes
|
|
if (SetupProcessing()==false)
|
|
return 2;
|
|
|
|
// Cleanup all unused material storages...
|
|
FDTD_Op->CleanupMaterialStorage();
|
|
|
|
//check and warn for unused properties and primitives
|
|
m_CSX->WarnUnusedPrimitves(cerr);
|
|
|
|
// dump all boxes (voltage, current, fields, ...)
|
|
if (m_debugBox)
|
|
{
|
|
PA->DumpBoxes2File("box_dump_");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
string FormatTime(int sec)
|
|
{
|
|
stringstream ss;
|
|
if (sec<60)
|
|
{
|
|
ss << setw(9) << sec << "s";
|
|
return ss.str();
|
|
}
|
|
if (sec<3600)
|
|
{
|
|
ss << setw(6) << sec/60 << "m" << setw(2) << setfill('0') << sec%60 << "s";
|
|
return ss.str();
|
|
}
|
|
ss << setw(3) << sec/3600 << "h" << setw(2) << setfill('0') << (sec%3600)/60 << "m" << setw(2) << setfill('0') << sec%60 << "s";
|
|
return ss.str();
|
|
}
|
|
|
|
bool openEMS::CheckAbortCond()
|
|
{
|
|
if (m_Abort) //abort was set externally
|
|
return true;
|
|
|
|
//check whether the file "ABORT" exist in current working directory
|
|
ifstream ifile("ABORT");
|
|
if (ifile)
|
|
{
|
|
ifile.close();
|
|
cerr << "openEMS::CheckAbortCond(): Found file \"ABORT\", aborting simulation..." << endl;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void openEMS::RunFDTD()
|
|
{
|
|
cout << "Running FDTD engine... this may take a while... grab a cup of coffee?!?" << endl;
|
|
|
|
//special handling of a field processing, needed to realize the end criteria...
|
|
ProcessFields* ProcField = new ProcessFields(NewEngineInterface());
|
|
PA->AddProcessing(ProcField);
|
|
double maxE=0,currE=0;
|
|
|
|
//init processings
|
|
PA->InitAll();
|
|
|
|
//add all timesteps to end-crit field processing with max excite amplitude
|
|
unsigned int maxExcite = FDTD_Op->GetExcitationSignal()->GetMaxExcitationTimestep();
|
|
// for (unsigned int n=0; n<FDTD_Op->Exc->Volt_Count; ++n)
|
|
// ProcField->AddStep(FDTD_Op->Exc->Volt_delay[n]+maxExcite);
|
|
ProcField->AddStep(maxExcite);
|
|
|
|
double change=1;
|
|
int prevTS=0,currTS=0;
|
|
double numCells = FDTD_Op->GetNumberCells();
|
|
double speed = 0;
|
|
double t_diff;
|
|
double t_run;
|
|
|
|
timeval currTime;
|
|
gettimeofday(&currTime,NULL);
|
|
timeval startTime = currTime;
|
|
timeval prevTime= currTime;
|
|
|
|
if (m_DumpStats)
|
|
InitRunStatistics(__OPENEMS_RUN_STAT_FILE__);
|
|
//*************** simulate ************//
|
|
|
|
PA->PreProcess();
|
|
int step=PA->Process();
|
|
if ((step<0) || (step>(int)NrTS)) step=NrTS;
|
|
while ((FDTD_Eng->GetNumberOfTimesteps()<NrTS) && (change>endCrit) && !CheckAbortCond())
|
|
{
|
|
FDTD_Eng->IterateTS(step);
|
|
step=PA->Process();
|
|
|
|
if ((Eng_Ext_SSD==NULL) && ProcField->CheckTimestep())
|
|
{
|
|
currE = ProcField->CalcTotalEnergyEstimate();
|
|
if (currE>maxE)
|
|
maxE=currE;
|
|
}
|
|
|
|
// cout << " do " << step << " steps; current: " << eng.GetNumberOfTimesteps() << endl;
|
|
currTS = FDTD_Eng->GetNumberOfTimesteps();
|
|
if ((step<0) || (step>(int)(NrTS - currTS))) step=NrTS - currTS;
|
|
|
|
gettimeofday(&currTime,NULL);
|
|
|
|
t_diff = CalcDiffTime(currTime,prevTime);
|
|
|
|
if (t_diff>4)
|
|
{
|
|
t_run = CalcDiffTime(currTime,startTime);
|
|
speed = numCells*(currTS-prevTS)/t_diff;
|
|
cout << "[@" << FormatTime(t_run) << "] Timestep: " << setw(12) << currTS ;
|
|
cout << " || Speed: " << setw(6) << setprecision(1) << std::fixed << speed*1e-6 << " MC/s (" << setw(4) << setprecision(3) << std::scientific << t_diff/(currTS-prevTS) << " s/TS)" ;
|
|
if (Eng_Ext_SSD==NULL)
|
|
{
|
|
currE = ProcField->CalcTotalEnergyEstimate();
|
|
if (currE>maxE)
|
|
maxE=currE;
|
|
if (maxE)
|
|
change = currE/maxE;
|
|
cout << " || Energy: ~" << setw(6) << setprecision(2) << std::scientific << currE << " (-" << setw(5) << setprecision(2) << std::fixed << fabs(10.0*log10(change)) << "dB)" << endl;
|
|
}
|
|
else
|
|
{
|
|
change = Eng_Ext_SSD->GetLastDiff();
|
|
cout << " || SteadyState: " << setw(6) << setprecision(2) << std::fixed << 10.0*log10(change) << " dB" << endl;
|
|
}
|
|
prevTime=currTime;
|
|
prevTS=currTS;
|
|
|
|
PA->FlushNext();
|
|
|
|
if (m_DumpStats)
|
|
DumpRunStatistics(__OPENEMS_RUN_STAT_FILE__, t_run, currTS, speed, currE);
|
|
FDTD_Eng->NextInterval(speed);
|
|
}
|
|
}
|
|
if ((change>endCrit) && (FDTD_Op->GetExcitationSignal()->GetExciteType()==0))
|
|
cerr << "RunFDTD: Warning: Max. number of timesteps was reached before the end-criteria of -" << fabs(10.0*log10(endCrit)) << "dB was reached... " << endl << \
|
|
"\tYou may want to choose a higher number of max. timesteps... " << endl;
|
|
|
|
gettimeofday(&currTime,NULL);
|
|
t_diff = CalcDiffTime(currTime,startTime);
|
|
|
|
cout << "Time for " << FDTD_Eng->GetNumberOfTimesteps() << " iterations with " << FDTD_Op->GetNumberCells() << " cells : " << t_diff << " sec" << endl;
|
|
cout << "Speed: " << numCells*(double)FDTD_Eng->GetNumberOfTimesteps()/t_diff*1e-6 << " MCells/s " << endl;
|
|
|
|
if (m_DumpStats)
|
|
DumpStatistics(__OPENEMS_STAT_FILE__, t_diff);
|
|
|
|
//*************** postproc ************//
|
|
PA->PostProcess();
|
|
}
|
|
|
|
bool openEMS::DumpStatistics(const string& filename, double time)
|
|
{
|
|
ofstream stat_file;
|
|
stat_file.open(filename.c_str());
|
|
|
|
if (!stat_file.is_open())
|
|
{
|
|
cerr << "openEMS::DumpStatistics: Error, opening file failed..." << endl;
|
|
return false;
|
|
}
|
|
stat_file << std::setprecision( 16 );
|
|
stat_file << FDTD_Op->GetNumberCells() << "\t% number of cells" << endl;
|
|
stat_file << FDTD_Op->GetTimestep() << "\t% timestep (s)" << endl;
|
|
stat_file << FDTD_Eng->GetNumberOfTimesteps() << "\t% number of iterations" << endl;
|
|
stat_file << FDTD_Eng->GetNumberOfTimesteps()*FDTD_Op->GetTimestep() << "\t% total numerical time (s)" << endl;
|
|
stat_file << time << "\t% simulation time (s)" << endl;
|
|
stat_file << (double)FDTD_Op->GetNumberCells()*(double)FDTD_Eng->GetNumberOfTimesteps()/time << "\t% speed (cells/s)" << endl;
|
|
|
|
stat_file.close();
|
|
return true;
|
|
}
|
|
|
|
bool openEMS::InitRunStatistics(const string& filename)
|
|
{
|
|
ofstream stat_file;
|
|
stat_file.open(filename.c_str(), ios_base::out);
|
|
|
|
if (!stat_file.is_open())
|
|
{
|
|
cerr << "openEMS::InitRunStatistics: Error, opening file failed..." << endl;
|
|
return false;
|
|
}
|
|
stat_file << "%time\ttimestep\tspeed\tenergy" << endl;
|
|
stat_file.close();
|
|
return true;
|
|
}
|
|
|
|
bool openEMS::DumpRunStatistics(const string& filename, double time, unsigned int ts, double speed, double energy)
|
|
{
|
|
ofstream stat_file;
|
|
stat_file.open(filename.c_str(), ios_base::app);
|
|
|
|
if (!stat_file.is_open())
|
|
{
|
|
cerr << "openEMS::DumpRunStatistics: Error, opening file failed..." << endl;
|
|
return false;
|
|
}
|
|
stat_file << time << "\t" << ts << "\t" << speed << "\t" << energy << endl;
|
|
stat_file.close();
|
|
return true;
|
|
}
|