171 lines
5.7 KiB
Matlab
171 lines
5.7 KiB
Matlab
function [port nf2ff] = Patch_Antenna_Array(Sim_Path, postproc_only, show_structure, xpos, caps, resist, active )
|
||
% [port nf2ff] = Patch_Antenna_Array(Sim_Path, postproc_only, show_structure, xpos, caps, resist, active )
|
||
%
|
||
% Script to setup the patch array as described in [1].
|
||
% Run main script in Patch_Antenna_Phased_Array.m instead!
|
||
%
|
||
% Sim_Path: Simulation path
|
||
% postproc_only: set to post process only 0/1
|
||
% show_structure: show the strucuture in AppCSXCAD 0/1
|
||
% xpos: the x-position for each antenna is defined
|
||
% caps: the port capacity (will override active port)
|
||
% resist: port resitance
|
||
% active: switch port active
|
||
%
|
||
% References:
|
||
% [1] Y. Yusuf and X. Gong, “A low-cost patch antenna phased array with
|
||
% analog beam steering using mutual coupling and reactive loading,” IEEE
|
||
% Antennas Wireless Propag. Lett., vol. 7, pp. 81–84, 2008.
|
||
%
|
||
% Tested with
|
||
% - Matlab 2011a
|
||
% - openEMS v0.0.31
|
||
%
|
||
% (C) 2013 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||
|
||
% example
|
||
% xpos = [-41 0 41];
|
||
% caps = [0.2e-12 0 0.2e-12];
|
||
% active = [0 1 0];
|
||
% resist = [50 50 50];
|
||
|
||
%% setup the simulation
|
||
physical_constants;
|
||
unit = 1e-3; % all length in mm
|
||
|
||
% patch geometry setup
|
||
patch.W = 35; % width
|
||
patch.L = 28.3; % length
|
||
patch.Ws = 3.8; % width of feeding stub
|
||
patch.Gs = 1; % width of feeding gab
|
||
patch.l = 6; % length of feeding stub
|
||
patch.y0 = 10; % depth of feeding stub into into patch
|
||
|
||
% patch resonance frequency
|
||
f0 = 3e9;
|
||
|
||
%substrate setup
|
||
substrate.name = 'Ro3003';
|
||
substrate.epsR = 3;
|
||
substrate.kappa = 0.0013 * 2*pi*f0 * EPS0*substrate.epsR;
|
||
substrate.thickness = 1.524;
|
||
substrate.cells = 4;
|
||
|
||
substrate.width = patch.W + range(xpos) + 4*patch.l;
|
||
substrate.length = 3*patch.l + patch.L;
|
||
|
||
% size of the simulation box
|
||
AirSpacer = [50 50 30];
|
||
|
||
edge_res = [-1/3 2/3]*1;
|
||
|
||
%% setup FDTD parameter & excitation function
|
||
fc = 2e9; % 20 dB corner frequency
|
||
FDTD = InitFDTD( 'EndCriteria', 1e-4 );
|
||
FDTD = SetGaussExcite( FDTD, f0, fc );
|
||
BC = [1 1 1 1 1 1]*3;
|
||
FDTD = SetBoundaryCond( FDTD, BC );
|
||
|
||
%% setup CSXCAD geometry & mesh
|
||
CSX = InitCSX();
|
||
|
||
mesh.x = [];
|
||
mesh.y = [];
|
||
mesh.z = [];
|
||
|
||
%% create patch
|
||
CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC)
|
||
|
||
for port_nr=1:numel(xpos)
|
||
start = [xpos(port_nr)-patch.W/2 patch.l substrate.thickness];
|
||
stop = [xpos(port_nr)-patch.Ws/2-patch.Gs patch.l+patch.L substrate.thickness];
|
||
CSX = AddBox(CSX,'patch',10, start, stop);
|
||
mesh.x = [mesh.x xpos(port_nr)-patch.W/2-edge_res];
|
||
|
||
start = [xpos(port_nr)+patch.W/2 patch.l substrate.thickness];
|
||
stop = [xpos(port_nr)+patch.Ws/2+patch.Gs patch.l+patch.L substrate.thickness];
|
||
CSX = AddBox(CSX,'patch',10, start, stop);
|
||
mesh.x = [mesh.x xpos(port_nr)+patch.W/2+edge_res];
|
||
|
||
mesh.y = [mesh.y patch.l-edge_res patch.l+patch.L+edge_res];
|
||
|
||
start = [xpos(port_nr)-patch.Ws/2-patch.Gs patch.l+patch.y0 substrate.thickness];
|
||
stop = [xpos(port_nr)+patch.Ws/2+patch.Gs patch.l+patch.L substrate.thickness];
|
||
CSX = AddBox(CSX,'patch',10, start, stop);
|
||
|
||
% feed line
|
||
start = [xpos(port_nr)-patch.Ws/2 patch.l+patch.y0 substrate.thickness];
|
||
stop = [xpos(port_nr)+patch.Ws/2 0 substrate.thickness];
|
||
CSX = AddBox(CSX,'patch',10, start, stop);
|
||
|
||
mesh.x = [mesh.x xpos(port_nr)+linspace(-patch.Ws/2-patch.Gs,-patch.Ws/2,3) xpos(port_nr)+linspace(patch.Ws/2,patch.Ws/2+patch.Gs,3)];
|
||
|
||
start = [xpos(port_nr)-patch.Ws/2 0 0];
|
||
stop = [xpos(port_nr)+patch.Ws/2 0 substrate.thickness];
|
||
if (caps(port_nr)>0)
|
||
CSX = AddLumpedElement(CSX, ['C_' num2str(port_nr)], 2, 'C', caps(port_nr));
|
||
CSX = AddBox(CSX,['C_' num2str(port_nr)],10, start, stop);
|
||
|
||
[CSX port{port_nr}] = AddLumpedPort(CSX, 5 ,port_nr ,inf, start, stop, [0 0 1], 0);
|
||
else
|
||
% feed port
|
||
[CSX port{port_nr}] = AddLumpedPort(CSX, 5 ,port_nr, resist(port_nr), start, stop, [0 0 1], active(port_nr));
|
||
end
|
||
end
|
||
|
||
%% create substrate
|
||
CSX = AddMaterial( CSX, substrate.name );
|
||
CSX = SetMaterialProperty( CSX, substrate.name, 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa );
|
||
start = [-substrate.width/2 0 0];
|
||
stop = [ substrate.width/2 substrate.length substrate.thickness];
|
||
CSX = AddBox( CSX, substrate.name, 0, start, stop );
|
||
|
||
mesh.x = [mesh.x start(1) stop(1)];
|
||
mesh.y = [mesh.y start(2) stop(2)];
|
||
|
||
% add extra cells to discretize the substrate thickness
|
||
mesh.z = [linspace(0,substrate.thickness,substrate.cells+1) mesh.z];
|
||
|
||
%% create ground (same size as substrate)
|
||
CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC)
|
||
start(3)=0;
|
||
stop(3) =0;
|
||
CSX = AddBox(CSX,'gnd',10,start,stop);
|
||
|
||
%% finalize the mesh
|
||
% generate a smooth mesh with max. cell size: lambda_min / 20
|
||
mesh = SmoothMesh(mesh, 2, 1.3);
|
||
mesh.x = [mesh.x min(mesh.x)-AirSpacer(1) max(mesh.x)+AirSpacer(1)];
|
||
mesh.y = [mesh.y min(mesh.y)-AirSpacer(2) max(mesh.y)+AirSpacer(2)];
|
||
mesh.z = [mesh.z min(mesh.z)-AirSpacer(3) max(mesh.z)+2*AirSpacer(3)];
|
||
|
||
mesh = SmoothMesh(mesh, c0 / (f0+fc) / unit / 20, 1.3);
|
||
|
||
%% add a nf2ff calc box; size is 3 cells away from MUR boundary condition
|
||
start = [mesh.x(4) mesh.y(4) mesh.z(4)];
|
||
stop = [mesh.x(end-3) mesh.y(end-3) mesh.z(end-3)];
|
||
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
|
||
|
||
mesh = AddPML(mesh,(BC==3)*8);
|
||
CSX = DefineRectGrid(CSX, unit, mesh);
|
||
|
||
%% prepare simulation folder
|
||
Sim_CSX = 'patch_array.xml';
|
||
|
||
if (postproc_only==0)
|
||
[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory
|
||
[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder
|
||
|
||
%% write openEMS compatible xml-file
|
||
WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX );
|
||
|
||
%% show the structure
|
||
if (show_structure>0)
|
||
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
|
||
end
|
||
|
||
%% run openEMS
|
||
RunOpenEMS( Sim_Path, Sim_CSX);
|
||
end
|
||
|