openEMS/FDTD/engine_sse.cpp

163 lines
5.5 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine_sse.h"
//! \brief construct an Engine_sse instance
//! it's the responsibility of the caller to free the returned pointer
Engine_sse* Engine_sse::New(const Operator_sse* op)
{
Engine_sse* e = new Engine_sse(op);
e->Init();
return e;
}
Engine_sse::Engine_sse(const Operator_sse* op) : Engine(op)
{
Op = op;
for (int n=0;n<3;++n)
{
numLines[n] = Op->GetNumberOfLines(n);
}
}
Engine_sse::~Engine_sse()
{
this->Reset();
}
void Engine_sse::Init()
{
numTS = 0;
volt_ = Create_N_3DArray_v4sf(numLines);
curr_ = Create_N_3DArray_v4sf(numLines);
volt = 0; // not used
curr = 0; // not used
}
void Engine_sse::Reset()
{
Delete_N_3DArray_v4sf(volt_,numLines);
volt_ = 0;
Delete_N_3DArray_v4sf(curr_,numLines);
curr_ = 0;
}
void Engine_sse::UpdateVoltages()
{
unsigned int pos[3];
bool shift[2];
f4vector temp;
for (pos[0]=0;pos[0]<numLines[0];++pos[0])
{
shift[0]=pos[0];
for (pos[1]=0;pos[1]<numLines[1];++pos[1])
{
shift[1]=pos[1];
for (pos[2]=0;pos[2]<numLines[2]/4;++pos[2])
{
// x-polarization
temp.f[0] = curr_[1][pos[0]][pos[1]][pos[2]-(bool)pos[2]].f[3];
temp.f[1] = curr_[1][pos[0]][pos[1]][pos[2]].f[0];
temp.f[2] = curr_[1][pos[0]][pos[1]][pos[2]].f[1];
temp.f[3] = curr_[1][pos[0]][pos[1]][pos[2]].f[2];
volt_[0][pos[0]][pos[1]][pos[2]].v *= Op->vv_[0][pos[0]][pos[1]][pos[2]].v;
volt_[0][pos[0]][pos[1]][pos[2]].v += Op->vi_[0][pos[0]][pos[1]][pos[2]].v * ( curr_[2][pos[0]][pos[1]][pos[2]].v - curr_[2][pos[0]][pos[1]-shift[1]][pos[2]].v - curr_[1][pos[0]][pos[1]][pos[2]].v + temp.v );
// y-polarization
temp.f[0] = curr_[0][pos[0]][pos[1]][pos[2]-(bool)pos[2]].f[3];
temp.f[1] = curr_[0][pos[0]][pos[1]][pos[2]].f[0];
temp.f[2] = curr_[0][pos[0]][pos[1]][pos[2]].f[1];
temp.f[3] = curr_[0][pos[0]][pos[1]][pos[2]].f[2];
volt_[1][pos[0]][pos[1]][pos[2]].v *= Op->vv_[1][pos[0]][pos[1]][pos[2]].v;
volt_[1][pos[0]][pos[1]][pos[2]].v += Op->vi_[1][pos[0]][pos[1]][pos[2]].v * ( curr_[0][pos[0]][pos[1]][pos[2]].v - temp.v - curr_[2][pos[0]][pos[1]][pos[2]].v + curr_[2][pos[0]-shift[0]][pos[1]][pos[2]].v);
// z-polarization
volt_[2][pos[0]][pos[1]][pos[2]].v *= Op->vv_[2][pos[0]][pos[1]][pos[2]].v;
volt_[2][pos[0]][pos[1]][pos[2]].v += Op->vi_[2][pos[0]][pos[1]][pos[2]].v * ( curr_[1][pos[0]][pos[1]][pos[2]].v - curr_[1][pos[0]-shift[0]][pos[1]][pos[2]].v - curr_[0][pos[0]][pos[1]][pos[2]].v + curr_[0][pos[0]][pos[1]-shift[1]][pos[2]].v);
}
}
}
}
void Engine_sse::ApplyVoltageExcite()
{
int exc_pos;
unsigned int pos;
//soft voltage excitation here (E-field excite)
for (unsigned int n=0;n<Op->E_Exc_Count;++n)
{
exc_pos = (int)numTS - (int)Op->E_Exc_delay[n];
exc_pos *= (exc_pos>0 && exc_pos<=(int)Op->ExciteLength);
pos = Op->E_Exc_index[2][n];
volt_[Op->E_Exc_dir[n]][Op->E_Exc_index[0][n]][Op->E_Exc_index[1][n]][pos/4].f[pos%4] += Op->E_Exc_amp[n]*Op->ExciteSignal[exc_pos];
}
}
void Engine_sse::UpdateCurrents()
{
unsigned int pos[5];
f4vector temp;
for (pos[0]=0;pos[0]<numLines[0]-1;++pos[0])
{
for (pos[1]=0;pos[1]<numLines[1]-1;++pos[1])
{
for (pos[2]=0;pos[2]<numLines[2]/4;++pos[2]) // FIXME is this correct?
{
// x-pol
temp.f[0] = volt_[1][pos[0]][pos[1]][pos[2]].f[1];
temp.f[1] = volt_[1][pos[0]][pos[1]][pos[2]].f[2];
temp.f[2] = volt_[1][pos[0]][pos[1]][pos[2]].f[3];
temp.f[3] = volt_[1][pos[0]][pos[1]][pos[2]+1].f[0]; // FIXME outside sim area
curr_[0][pos[0]][pos[1]][pos[2]].v *= Op->ii_[0][pos[0]][pos[1]][pos[2]].v;
curr_[0][pos[0]][pos[1]][pos[2]].v += Op->iv_[0][pos[0]][pos[1]][pos[2]].v * ( volt_[2][pos[0]][pos[1]][pos[2]].v - volt_[2][pos[0]][pos[1]+1][pos[2]].v - volt_[1][pos[0]][pos[1]][pos[2]].v + temp.v);
// y-pol
temp.f[0] = volt_[0][pos[0]][pos[1]][pos[2]].f[1];
temp.f[1] = volt_[0][pos[0]][pos[1]][pos[2]].f[2];
temp.f[2] = volt_[0][pos[0]][pos[1]][pos[2]].f[3];
temp.f[3] = volt_[0][pos[0]][pos[1]][pos[2]+1].f[0]; // FIXME outside sim area
curr_[1][pos[0]][pos[1]][pos[2]].v *= Op->ii_[1][pos[0]][pos[1]][pos[2]].v;
curr_[1][pos[0]][pos[1]][pos[2]].v += Op->iv_[1][pos[0]][pos[1]][pos[2]].v * ( volt_[0][pos[0]][pos[1]][pos[2]].v - temp.v - volt_[2][pos[0]][pos[1]][pos[2]].v + volt_[2][pos[0]+1][pos[1]][pos[2]].v);
// z-pol
curr_[2][pos[0]][pos[1]][pos[2]].v *= Op->ii_[2][pos[0]][pos[1]][pos[2]].v;
curr_[2][pos[0]][pos[1]][pos[2]].v += Op->iv_[2][pos[0]][pos[1]][pos[2]].v * ( volt_[1][pos[0]][pos[1]][pos[2]].v - volt_[1][pos[0]+1][pos[1]][pos[2]].v - volt_[0][pos[0]][pos[1]][pos[2]].v + volt_[0][pos[0]][pos[1]+1][pos[2]].v);
}
}
}
}
void Engine_sse::ApplyCurrentExcite()
{
}
bool Engine_sse::IterateTS(unsigned int iterTS)
{
for (unsigned int iter=0;iter<iterTS;++iter)
{
UpdateVoltages();
ApplyVoltageExcite();
UpdateCurrents();
ApplyCurrentExcite();
++numTS;
}
return true;
}