217 lines
6.9 KiB
Matlab
217 lines
6.9 KiB
Matlab
function pass = cavity
|
|
|
|
physical_constants;
|
|
|
|
|
|
ENABLE_PLOTS = 1;
|
|
CLEANUP = 1; % if enabled and result is PASS, remove simulation folder
|
|
STOP_IF_FAILED = 1; % if enabled and result is FAILED, stop with error
|
|
|
|
% LIMITS - inside
|
|
lower_rel_limit = 1.3e-3; % -0.13%
|
|
upper_rel_limit = 1.3e-3; % +0.13%
|
|
lower_rel_limit_TM = 2.5e-3; % -0.25%
|
|
upper_rel_limit_TM = 0; % +0%
|
|
min_rel_amplitude = 0.6; % 60%
|
|
min_rel_amplitude_TM = 0.27; % 27%
|
|
|
|
% LIMITS - outside
|
|
outer_rel_limit = 0.02;
|
|
max_rel_amplitude = 0.17;
|
|
|
|
|
|
% structure
|
|
a = 5e-2;
|
|
b = 2e-2;
|
|
d = 6e-2;
|
|
if ~((b<a) && (a<d))
|
|
error 'correct the dimensions of the cavity'
|
|
end
|
|
|
|
f_start = 1e9;
|
|
f_stop = 10e9;
|
|
|
|
Sim_Path = 'tmp';
|
|
Sim_CSX = 'cavity.xml';
|
|
|
|
[status,message,messageid]=rmdir(Sim_Path,'s');
|
|
[status,message,messageid]=mkdir(Sim_Path);
|
|
|
|
%setup FDTD parameter
|
|
FDTD = InitFDTD( 20000,1e-6 );
|
|
FDTD = SetGaussExcite(FDTD,(f_stop-f_start)/2,(f_stop-f_start)/2);
|
|
BC = [0 0 0 0 0 0]; % PEC boundaries
|
|
FDTD = SetBoundaryCond(FDTD,BC);
|
|
|
|
%setup CSXCAD geometry
|
|
CSX = InitCSX();
|
|
% grid_res = 2e-3;
|
|
% mesh.x = 0:grid_res:a; %linspace(0,a,25);
|
|
% mesh.y = 0:grid_res:b; %linspace(0,b,25);
|
|
% mesh.z = 0:grid_res:d; %linspace(0,d,25);
|
|
mesh.x = linspace(0,a,26);
|
|
mesh.y = linspace(0,b,11);
|
|
mesh.z = linspace(0,d,32);
|
|
CSX = DefineRectGrid(CSX, 1,mesh);
|
|
|
|
% excitation
|
|
CSX = AddExcitation(CSX,'excite1',0,[1 1 1]);
|
|
p(1,1) = mesh.x(floor(end*2/3));
|
|
p(2,1) = mesh.y(floor(end*2/3));
|
|
p(3,1) = mesh.z(floor(end*2/3));
|
|
p(1,2) = mesh.x(floor(end*2/3)+1);
|
|
p(2,2) = mesh.y(floor(end*2/3)+1);
|
|
p(3,2) = mesh.z(floor(end*2/3)+1);
|
|
CSX = AddCurve( CSX, 'excite1', 0, p );
|
|
|
|
%dump
|
|
% CSX = AddDump(CSX,'Et_',0,2);
|
|
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
|
|
% pos2 = [mesh.x(end) mesh.y(end) mesh.z(end)];
|
|
% CSX = AddBox(CSX,'Et_',0 , pos1,pos2);
|
|
|
|
% %dump
|
|
% CSX = AddDump(CSX,'Et2_',0,2);
|
|
% pos1 = [mesh.x(1) mesh.y(1) mesh.z(1)];
|
|
% pos2 = [mesh.x(end) mesh.y(1) mesh.z(end)];
|
|
% CSX = AddBox(CSX,'Et2_',0 , pos1,pos2);
|
|
%
|
|
% %dump
|
|
% CSX = AddDump(CSX,'Et3_',0,2);
|
|
% pos1 = [mesh.x(1) mesh.y(end-1) mesh.z(1)];
|
|
% pos2 = [mesh.x(end) mesh.y(end-1) mesh.z(end)];
|
|
% CSX = AddBox(CSX,'Et3_',0 , pos1,pos2);
|
|
|
|
%voltage calc
|
|
CSX = AddProbe(CSX,'ut1x',0);
|
|
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
|
|
pos2 = [mesh.x(floor(end/4)+1) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
|
|
CSX = AddBox(CSX,'ut1x', 0 ,pos1,pos2);
|
|
|
|
CSX = AddProbe(CSX,'ut1y',0);
|
|
pos1 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
|
|
pos2 = [mesh.x(floor(end/4)) mesh.y(floor(end/2)+1) mesh.z(floor(end/5))];
|
|
CSX = AddBox(CSX,'ut1y', 0 ,pos1,pos2);
|
|
|
|
CSX = AddProbe(CSX,'ut1z',0);
|
|
pos1 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5))];
|
|
pos2 = [mesh.x(floor(end/2)) mesh.y(floor(end/2)) mesh.z(floor(end/5)+1)];
|
|
CSX = AddBox(CSX,'ut1z', 0 ,pos1,pos2);
|
|
|
|
%Write openEMS compatible xml-file
|
|
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
|
|
|
%cd to working dir and run openEMS
|
|
savePath = pwd();
|
|
cd(Sim_Path); %cd to working dir
|
|
invoke_openEMS( Sim_CSX );
|
|
UI = ReadUI( {'ut1x', 'ut1y', 'ut1z'} );
|
|
cd(savePath);
|
|
|
|
|
|
|
|
%
|
|
% analysis
|
|
%
|
|
|
|
% remove excitation from time series
|
|
t_start = 7e-10; % FIXME to be calculated
|
|
t_idx_start = interp1( UI.TD{1}.t, 1:numel(UI.TD{1}.t), t_start, 'nearest' );
|
|
for n=1:numel(UI.TD)
|
|
UI.TD{n}.t = UI.TD{n}.t(t_idx_start:end);
|
|
UI.TD{n}.val = UI.TD{n}.val(t_idx_start:end);
|
|
[UI.FD{n}.f,UI.FD{n}.val] = FFT_time2freq( UI.TD{n}.t, UI.TD{n}.val );
|
|
end
|
|
|
|
|
|
f = UI.FD{1}.f;
|
|
ux = UI.FD{1}.val;
|
|
uy = UI.FD{2}.val;
|
|
uz = UI.FD{3}.val;
|
|
|
|
f_idx_start = interp1( f, 1:numel(f), f_start, 'nearest' );
|
|
f_idx_stop = interp1( f, 1:numel(f), f_stop, 'nearest' );
|
|
f = f(f_idx_start:f_idx_stop);
|
|
ux = ux(f_idx_start:f_idx_stop);
|
|
uy = uy(f_idx_start:f_idx_stop);
|
|
uz = uz(f_idx_start:f_idx_stop);
|
|
|
|
% analytic formula for resonant wavenumber
|
|
k = @(m,n,l) sqrt( (m*pi/a)^2 + (n*pi/b)^2 + (l*pi/d)^2 );
|
|
f_TE101 = c0/(2*pi) * k(1,0,1);
|
|
f_TE102 = c0/(2*pi) * k(1,0,2);
|
|
f_TE201 = c0/(2*pi) * k(2,0,1);
|
|
f_TE202 = c0/(2*pi) * k(2,0,2);
|
|
f_TM110 = c0/(2*pi) * k(1,1,0);
|
|
f_TM111 = c0/(2*pi) * k(1,1,1);
|
|
|
|
f_TE = [f_TE101 f_TE102 f_TE201 f_TE202];
|
|
f_TM = [f_TM110 f_TM111];
|
|
|
|
% calculate frequency limits
|
|
temp = [f_start f_TE f_stop];
|
|
f_outer1 = [];
|
|
f_outer2 = [];
|
|
for n=1:numel(temp)-1
|
|
f_outer1 = [f_outer1 temp(n) .* (1+outer_rel_limit)];
|
|
f_outer2 = [f_outer2 temp(n+1) .* (1-outer_rel_limit)];
|
|
end
|
|
|
|
temp = [f_start f_TM f_stop];
|
|
f_outer1_TM = [];
|
|
f_outer2_TM = [];
|
|
for n=1:numel(temp)-1
|
|
f_outer1_TM = [f_outer1_TM temp(n) .* (1+outer_rel_limit)];
|
|
f_outer2_TM = [f_outer2_TM temp(n+1) .* (1-outer_rel_limit)];
|
|
end
|
|
|
|
|
|
if ENABLE_PLOTS
|
|
figure
|
|
plot(f/1e9,abs(uy))
|
|
max1 = max(abs(uy));
|
|
hold on
|
|
plot( repmat(f_TE,2,1)/1e9, repmat([0; max1],1,numel(f_TE)), 'm-.', 'LineWidth', 2 )
|
|
plot( (repmat(f_TE,2,1) .* repmat(1-lower_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
|
|
plot( (repmat(f_TE,2,1) .* repmat(1+upper_rel_limit,2,numel(f_TE)))/1e9, repmat([0; max1],1,numel(f_TE)), 'r-', 'LineWidth', 1 )
|
|
plot( (repmat(f_TE,2,1) .* repmat([1-outer_rel_limit;1+outer_rel_limit],1,numel(f_TE)))/1e9, repmat(max1*min_rel_amplitude,2,numel(f_TE)), 'r-', 'LineWidth', 1 ) % freq limits
|
|
plot( [f_outer1;f_outer2]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1)), 'g-', 'LineWidth', 1 ) % amplitude limits
|
|
xlabel('Frequency (GHz)')
|
|
legend( {'u_y','theoretical'} )
|
|
title( 'TE-modes' )
|
|
|
|
figure
|
|
plot(f/1e9,abs(uz))
|
|
max1 = max(abs(uz));
|
|
hold on
|
|
plot( repmat(f_TM,2,1)/1e9, repmat([0; max1],1,numel(f_TM)), 'm-.', 'LineWidth', 2 )
|
|
plot( (repmat(f_TM,2,1) .* repmat(1-lower_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
|
|
plot( (repmat(f_TM,2,1) .* repmat(1+upper_rel_limit_TM,2,numel(f_TM)))/1e9, repmat([0; max1],1,numel(f_TM)), 'r-', 'LineWidth', 1 )
|
|
plot( (repmat(f_TM,2,1) .* repmat([1-lower_rel_limit_TM;1+upper_rel_limit_TM],1,numel(f_TM)))/1e9, repmat(max1*min_rel_amplitude_TM,2,numel(f_TM)), 'r-', 'LineWidth', 1 ) % freq limits
|
|
plot( [f_outer1_TM;f_outer2_TM]/1e9, repmat(max1*max_rel_amplitude,2,numel(f_outer1_TM)), 'g-', 'LineWidth', 1 ) % amplitude limits
|
|
xlabel('Frequency (GHz)')
|
|
legend( {'u_z','theoretical'} )
|
|
title( 'TM-modes' )
|
|
end
|
|
|
|
pass1 = check_frequency( f, abs(uy), f_TE*(1+upper_rel_limit), f_TE*(1-lower_rel_limit), min_rel_amplitude, 'inside' );
|
|
pass2 = check_frequency( f, abs(uz), f_TM*(1+upper_rel_limit_TM), f_TM*(1-lower_rel_limit_TM), min_rel_amplitude_TM, 'inside' );
|
|
pass3 = check_frequency( f, abs(uy), f_outer2, f_outer1, max_rel_amplitude, 'outside' );
|
|
pass4 = check_frequency( f, abs(uz), f_outer2_TM, f_outer1_TM, max_rel_amplitude, 'outside' );
|
|
pass = pass1 && pass2 && pass3 && pass4;
|
|
if pass
|
|
disp( 'combinedtests/cavity.m (resonance frequency): pass' );
|
|
else
|
|
disp( 'combinedtests/cavity.m (resonance frequency): * FAILED *' );
|
|
end
|
|
|
|
|
|
|
|
|
|
if pass && CLEANUP
|
|
rmdir( Sim_Path, 's' );
|
|
end
|
|
if ~pass && STOP_IF_FAILED
|
|
error 'test failed';
|
|
end
|