156 lines
5.1 KiB
Matlab
156 lines
5.1 KiB
Matlab
function [CSX,port] = AddCurvePort( CSX, portnr, R, start, stop, excitename )
|
|
%[CSX,port] = AddCurvePort( CSX, portnr, materialname, start, stop [, excitename] )
|
|
%
|
|
% Creates a curve port (1-dimensional).
|
|
% The mesh must already be initialized.
|
|
%
|
|
% input:
|
|
% CSX: CSX-object created by InitCSX()
|
|
% portnr: (integer) number of the port
|
|
% R: internal resistance of the port
|
|
% start: 3D start rowvector for port definition
|
|
% stop: 3D end rowvector for port definition
|
|
% excitename (optional): if specified, the port will be switched on (see AddExcitation())
|
|
%
|
|
% output:
|
|
% CSX:
|
|
% port:
|
|
%
|
|
% example:
|
|
% start = [0 0 0]; stop = [0 0 12];
|
|
% this defines a lumped port in z-direction
|
|
% the excitation/probe is placed between start(1) and stop(1)
|
|
%
|
|
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
|
|
% See also InitCSX AddExcitation
|
|
|
|
% make row vector
|
|
start = reshape( start, 1, [] );
|
|
stop = reshape( stop , 1, [] );
|
|
|
|
% get grid
|
|
mesh{1} = sort(unique(CSX.RectilinearGrid.XLines));
|
|
mesh{2} = sort(unique(CSX.RectilinearGrid.YLines));
|
|
mesh{3} = sort(unique(CSX.RectilinearGrid.ZLines));
|
|
unit = CSX.RectilinearGrid.ATTRIBUTE.DeltaUnit;
|
|
|
|
% find port direction
|
|
dir = abs(stop - start);
|
|
[dummy,dir] = max(dir);
|
|
|
|
% other directions
|
|
dir1 = mod(dir,3)+1;
|
|
dir2 = mod(dir+1,3)+1;
|
|
|
|
% normalize start and stop
|
|
if start(dir) < stop(dir)
|
|
nstart = start;
|
|
nstop = stop;
|
|
else
|
|
nstart = stop;
|
|
nstop = start;
|
|
end
|
|
|
|
% snap to grid
|
|
start_idx = zeros(1,3);
|
|
stop_idx = zeros(1,3);
|
|
for n=1:3
|
|
start_idx(n) = interp1( mesh{n}, 1:numel(mesh{n}), nstart(n), 'nearest' );
|
|
stop_idx(n) = interp1( mesh{n}, 1:numel(mesh{n}), nstop(n), 'nearest' );
|
|
end
|
|
|
|
% calculate position
|
|
port_start_idx = start_idx;
|
|
port_stop_idx = stop_idx;
|
|
if abs(start_idx(dir) - stop_idx(dir)) ~= 1
|
|
% calc port position
|
|
idx = interp1( mesh{dir}, 1:numel(mesh{dir}), (nstart(dir)+nstop(dir))/2, 'nearest' );
|
|
idx1 = interp1( mesh{dir1}, 1:numel(mesh{dir1}), (nstart(dir1)+nstop(dir1))/2, 'nearest' );
|
|
idx2 = interp1( mesh{dir2}, 1:numel(mesh{dir2}), (nstart(dir2)+nstop(dir2))/2, 'nearest' );
|
|
port_start_idx(dir) = idx;
|
|
port_start_idx(dir1) = idx1;
|
|
port_start_idx(dir2) = idx2;
|
|
port_stop_idx(dir) = idx+1;
|
|
port_stop_idx(dir1) = idx1;
|
|
port_stop_idx(dir2) = idx2;
|
|
metalname = ['port' num2str(portnr) '_PEC'];
|
|
CSX = AddMetal( CSX, metalname );
|
|
CSX = AddCurve( CSX, metalname, 999, [nstart.' [mesh{1}(port_start_idx(1));mesh{2}(port_start_idx(2));mesh{3}(port_start_idx(3))]] );
|
|
CSX = AddCurve( CSX, metalname, 999, [nstop.' [mesh{1}(port_stop_idx(1));mesh{2}(port_stop_idx(2));mesh{3}(port_stop_idx(3))]] );
|
|
end
|
|
|
|
% calculate position of resistive material
|
|
delta1_n = mesh{dir1}(port_start_idx(dir1)) - mesh{dir1}(port_start_idx(dir1)-1);
|
|
delta1_p = mesh{dir1}(port_start_idx(dir1)+1) - mesh{dir1}(port_start_idx(dir1));
|
|
delta2_n = mesh{dir2}(port_start_idx(dir2)) - mesh{dir2}(port_start_idx(dir2)-1);
|
|
delta2_p = mesh{dir2}(port_start_idx(dir2)+1) - mesh{dir2}(port_start_idx(dir2));
|
|
m_start = zeros(1,3);
|
|
m_stop = zeros(1,3);
|
|
for n=1:3
|
|
m_start(n) = mesh{n}(port_start_idx(n));
|
|
m_stop(n) = mesh{n}(port_stop_idx(n));
|
|
end
|
|
m_start(dir1) = m_start(dir1) - delta1_n/2;
|
|
m_stop(dir1) = m_stop(dir1) + delta1_p/2;
|
|
m_start(dir2) = m_start(dir2) - delta2_n/2;
|
|
m_stop(dir2) = m_stop(dir2) + delta2_p/2;
|
|
|
|
% calculate kappa
|
|
l = abs((m_stop(dir) - m_start(dir))) * unit; % length of the "resistor"
|
|
A = (m_stop(dir1) - m_start(dir1)) * (m_stop(dir2) - m_start(dir2)) * unit^2; % area of the "resistor"
|
|
A = abs(A);
|
|
kappa = l/A / R; % [kappa] = S/m
|
|
materialname = ['port' num2str(portnr) '_sheet_resistance'];
|
|
CSX = AddMaterial( CSX, materialname );%, 'Isotropy', 0 );
|
|
% kappa_cell = {0,0,0};
|
|
% kappa_cell{dir} = kappa;
|
|
kappa_cell = kappa;
|
|
CSX = SetMaterialProperty( CSX, materialname, 'Kappa', kappa_cell );
|
|
CSX = AddBox( CSX, materialname, 999, m_start, m_stop );
|
|
|
|
% calculate position of the voltage probe
|
|
v_start = [mesh{1}(port_start_idx(1)), mesh{2}(port_start_idx(2)), mesh{3}(port_start_idx(3))];
|
|
v_stop = [mesh{1}(port_stop_idx(1)), mesh{2}(port_stop_idx(2)), mesh{3}(port_stop_idx(3))];
|
|
|
|
% calculate position of the current probe
|
|
i_start = m_start;
|
|
i_stop = m_stop;
|
|
i_start(dir) = (i_start(dir)+i_stop(dir))/2;
|
|
i_stop(dir) = i_start(dir);
|
|
|
|
% create the probes
|
|
name = ['port_ut' num2str(portnr)];
|
|
weight = -1;
|
|
CSX = AddProbe( CSX, name, 0, weight );
|
|
CSX = AddBox( CSX, name, 999, v_start, v_stop );
|
|
name = ['port_it' num2str(portnr)];
|
|
weight = 1;
|
|
CSX = AddProbe( CSX, name, 1, weight );
|
|
CSX = AddBox( CSX, name, 999, i_start, i_stop );
|
|
|
|
% create port structure
|
|
port.nr = portnr;
|
|
port.drawingunit = unit;
|
|
% port.start = start;
|
|
% port.stop = stop;
|
|
% port.v_start = v_start;
|
|
% port.v_stop = v_stop;
|
|
% port.i_start = i_start;
|
|
% port.i_stop = i_stop;
|
|
% port.dir = dir;
|
|
% port.direction = direction;
|
|
% port.idx_cal = idx_cal;
|
|
% port.idx1 = idx1;
|
|
% port.idx1 = idx1;
|
|
port.excite = 0;
|
|
|
|
% create excitation
|
|
if (nargin >= 6) && ~isempty(excitename)
|
|
% excitation of this port is enabled
|
|
port.excite = 1;
|
|
e_start = v_start;
|
|
e_stop = v_stop;
|
|
CSX = AddExcitation( CSX, excitename, 0, start_idx ~= stop_idx );
|
|
CSX = AddBox( CSX, excitename, 999, e_start, e_stop );
|
|
end
|