openEMS/matlab/calcPort.m

134 lines
4.0 KiB
Matlab

function [port] = calcPort( port, SimDir, f, varargin)
% [port] = calcPort( port, SimDir, f, [ref_ZL], [ref_shift])
%
% Calculate voltages and currents, the propagation constant beta
% and the characteristic impedance ZL of the given port.
% The port has to be created by e.g. AddMSLPort().
%
% input:
% port: return value of AddMSLPort()
% SimDir: directory, where the simulation files are
% f: frequency vector for DFT
%
% variable input:
% 'RefImpedance': use a given reference impedance to calculate inc and
% ref voltages and currents
% default is given port or calculated line impedance
% 'RefPlaneShift': use a given reference plane shift from port beginning
% for a desired phase correction
% default is the measurement plane
%
% output:
% port.f the given frequency fector
% port.uf.tot/inc/ref total, incoming and reflected voltage
% port.if.tot/inc/ref total, incoming and reflected current
% port.beta: propagation constant
% port.ZL: characteristic line impedance
%
% example:
% port{1} = calcPort( port{1}, Sim_Path, f, 'RefImpedance', 50);
% or
%
% reference: W. K. Gwarek, "A Differential Method of Reflection Coefficient Extraction From FDTD Simulations",
% IEEE Microwave and Guided Wave Letters, Vol. 6, No. 5, May 1996
%
% openEMS matlab interface
% -----------------------
% (C) 2010 Sebastian Held <sebastian.held@uni-due.de>
% See also AddMSLPort
%DEBUG
% save('/tmp/test.mat', 'port', 'SimDir', 'f', 'nargin' )
% load('/tmp/test.mat')
% check
if abs((port.v_delta(1) - port.v_delta(2)) / port.v_delta(1))>1e-6
warning( 'openEMS:calcPort:mesh', 'mesh is not equidistant; expect degraded accuracy' );
end
%% read optional arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n_conv_arg = 3; % number of conventional arguments
%set defaults
ref_ZL = 0;
ref_shift = nan;
if (nargin>n_conv_arg)
for n=1:2:(nargin-n_conv_arg)
if (strcmp(varargin{n},'RefPlaneShift')==1);
ref_shift = varargin{n+1};
end
if (strcmp(varargin{n},'RefImpedance')==1);
ref_ZL = varargin{n+1};
end
end
end
% read time domain data
filename = ['port_ut' num2str(port.nr)];
U = ReadUI( {[filename 'A'],[filename 'B'],[filename 'C']}, SimDir, f );
filename = ['port_it' num2str(port.nr)];
I = ReadUI( {[filename 'A'],[filename 'B']}, SimDir, f );
% store the original frequency domain waveforms
u_f = U.FD{2}.val;
i_f = (I.FD{1}.val + I.FD{2}.val) / 2; % shift to same position as v
f = U.FD{2}.f;
Et = U.FD{2}.val;
dEt = (U.FD{3}.val - U.FD{1}.val) / (sum(abs(port.v_delta(1:2))) * port.drawingunit);
Ht = (I.FD{1}.val + I.FD{2}.val)/2; % space averaging: Ht is now defined at the same pos as Et
dHt = (I.FD{2}.val - I.FD{1}.val) / (abs(port.i_delta(1)) * port.drawingunit);
beta = sqrt( - dEt .* dHt ./ (Ht .* Et) );
beta(real(beta) < 0) = -beta(real(beta) < 0); % determine correct sign (unlike the paper)
% determine ZL
ZL = sqrt(Et .* dEt ./ (Ht .* dHt));
% reference plane shift (lossless)
if ~isnan(ref_shift)
% renormalize the shift to the measurement plane
ref_shift = ref_shift - port.measplanepos * port.drawingunit;
% ref_shift = ref_shift * port.drawingunit;
% store the shifted frequency domain waveforms
phase = real(beta)*ref_shift;
U.FD{1}.val = u_f .* cos(-phase) + 1i * i_f.*ZL .* sin(-phase);
I.FD{1}.val = i_f .* cos(-phase) + 1i * u_f./ZL .* sin(-phase);
u_f = U.FD{1}.val;
i_f = I.FD{1}.val;
end
if (ref_ZL == 0)
if isfield(port,'Feed_R')
ref_ZL = port.Feed_R;
else
ref_ZL = ZL;
end
end
port.ZL = ZL;
port.beta = beta;
port.f = f;
uf_inc = 0.5 * ( u_f + i_f .* ref_ZL );
if_inc = 0.5 * ( i_f + u_f ./ ref_ZL );
uf_ref = u_f - uf_inc;
if_ref = if_inc - i_f;
port.uf.tot = u_f;
port.uf.inc = uf_inc;
port.uf.ref = uf_ref;
port.if.tot = i_f;
port.if.inc = if_inc;
port.if.ref = if_ref;
port.raw.U = U;
port.raw.I = I;