openEMS/FDTD/operator_multithread.cpp

204 lines
5.3 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "operator_multithread.h"
#include "engine_multithread.h"
Operator_Multithread* Operator_Multithread::New(unsigned int numThreads)
{
cout << "Create FDTD operator (compressed SSE + multi-threading)" << endl;
Operator_Multithread* op = new Operator_Multithread();
op->setNumThreads(numThreads);
op->Init();
return op;
}
Operator_Multithread::~Operator_Multithread()
{
}
void Operator_Multithread::setNumThreads( unsigned int numThreads )
{
m_numThreads = numThreads;
}
Engine* Operator_Multithread::CreateEngine() const
{
Engine_Multithread* e = Engine_Multithread::New(this,m_numThreads);
return e;
}
Operator_Multithread::Operator_Multithread()
{
m_CalcEC_Start=NULL;
m_CalcEC_Stop=NULL;
m_CalcPEC_Start=NULL;
m_CalcPEC_Stop=NULL;
}
void Operator_Multithread::Init()
{
Operator_SSE_Compressed::Init();
m_CalcEC_Start=NULL;
m_CalcEC_Stop=NULL;
m_CalcPEC_Start=NULL;
m_CalcPEC_Stop=NULL;
}
void Operator_Multithread::Reset()
{
Operator_SSE_Compressed::Reset();
m_thread_group.join_all();
delete m_CalcEC_Start;m_CalcEC_Start=NULL;
delete m_CalcEC_Stop;m_CalcEC_Stop=NULL;
delete m_CalcPEC_Start;m_CalcPEC_Start=NULL;
delete m_CalcPEC_Stop;m_CalcPEC_Stop=NULL;
}
void Operator_Multithread::CalcStartStopLines(unsigned int &numThreads, vector<unsigned int> &start, vector<unsigned int> &stop) const
{
if (numLines[0]<numThreads) //in case more threads requested as lines in x-direction, reduce number of worker threads
numThreads = numLines[0];
unsigned int linesPerThread = round((float)numLines[0] / (float)numThreads);
if ((numThreads-1) * linesPerThread >= numLines[0])
--numThreads;
start.resize(numThreads);
stop.resize(numThreads);
for (unsigned int n=0; n<numThreads; n++)
{
start.at(n) = n * linesPerThread;
stop.at(n) = (n+1) * linesPerThread - 1;
if (n == numThreads-1) // last thread
stop.at(n) = numLines[0]-1;
}
}
int Operator_Multithread::CalcECOperator()
{
if (m_numThreads == 0)
m_numThreads = boost::thread::hardware_concurrency();
vector<unsigned int> m_Start_Lines;
vector<unsigned int> m_Stop_Lines;
CalcStartStopLines( m_numThreads, m_Start_Lines, m_Stop_Lines );
cout << "Multithreaded operator using " << m_numThreads << " threads." << std::endl;
m_thread_group.join_all();
delete m_CalcEC_Start;m_CalcEC_Start = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
delete m_CalcEC_Stop;m_CalcEC_Stop = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
delete m_CalcPEC_Start;m_CalcPEC_Start = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
delete m_CalcPEC_Stop;m_CalcPEC_Stop = new boost::barrier(m_numThreads+1); // numThread workers + 1 controller
for (unsigned int n=0; n<m_numThreads; n++)
{
boost::thread *t = new boost::thread( Operator_Thread(this,m_Start_Lines.at(n),m_Stop_Lines.at(n),n) );
m_thread_group.add_thread( t );
}
return Operator_SSE_Compressed::CalcECOperator();
}
bool Operator_Multithread::Calc_EC()
{
if (CSX==NULL) {cerr << "CartOperator::Calc_EC: CSX not given or invalid!!!" << endl; return false;}
MainOp->SetPos(0,0,0);
m_CalcEC_Start->wait();
m_CalcEC_Stop->wait();
return true;
}
bool Operator_Multithread::CalcPEC()
{
m_Nr_PEC[0]=0; m_Nr_PEC[1]=0; m_Nr_PEC[2]=0;
m_Nr_PEC_thread = new unsigned int[m_numThreads][3];
m_CalcPEC_Start->wait();
m_CalcPEC_Stop->wait();
for (unsigned int t=0;t<m_numThreads;++t)
for (int n=0;n<3;++n)
m_Nr_PEC[n]+=m_Nr_PEC_thread[t][n];
CalcPEC_Curves();
delete[] m_Nr_PEC_thread;
return true;
}
Operator_Thread::Operator_Thread( Operator_Multithread* ptr, unsigned int start, unsigned int stop, unsigned int threadID )
{
m_start=start;
m_stop=stop;
m_threadID=threadID;
m_OpPtr = ptr;
}
void Operator_Thread::operator()()
{
//************** calculate EC (Calc_EC) ***********************//
m_OpPtr->m_CalcEC_Start->wait();
unsigned int ipos;
unsigned int pos[3];
double inEC[4];
for (int n=0;n<3;++n)
{
for (pos[0]=m_start;pos[0]<=m_stop;++pos[0])
{
for (pos[1]=0;pos[1]<m_OpPtr->numLines[1];++pos[1])
{
for (pos[2]=0;pos[2]<m_OpPtr->numLines[2];++pos[2])
{
m_OpPtr->Calc_ECPos(n,pos,inEC);
ipos = m_OpPtr->MainOp->GetPos(pos[0],pos[1],pos[2]);
m_OpPtr->EC_C[n][ipos]=inEC[0];
m_OpPtr->EC_G[n][ipos]=inEC[1];
m_OpPtr->EC_L[n][ipos]=inEC[2];
m_OpPtr->EC_R[n][ipos]=inEC[3];
}
}
}
}
m_OpPtr->m_CalcEC_Stop->wait();
//************** calculate EC (Calc_EC) ***********************//
m_OpPtr->m_CalcPEC_Start->wait();
for (int n=0;n<3;++n)
m_OpPtr->m_Nr_PEC_thread[m_threadID][n] = 0;
m_OpPtr->CalcPEC_Range(m_start,m_stop,m_OpPtr->m_Nr_PEC_thread[m_threadID]);
m_OpPtr->m_CalcPEC_Stop->wait();
}